【題目】在平面直角坐標(biāo)系中,把點(diǎn)P(﹣5,3)向右平移8個(gè)單位得到點(diǎn)P1 , 再將點(diǎn)P1繞原點(diǎn)旋轉(zhuǎn)90°得到點(diǎn)P2 , 則點(diǎn)P2的坐標(biāo)是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
【答案】D
【解析】解:∵把點(diǎn)P(﹣5,3)向右平移8個(gè)單位得到點(diǎn)P1 ,
∴點(diǎn)P1的坐標(biāo)為:(3,3),
如圖所示:將點(diǎn)P1繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)P2 , 則其坐標(biāo)為:(﹣3,3),
將點(diǎn)P1繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)P3 , 則其坐標(biāo)為:(3,﹣3),
故符合題意的點(diǎn)的坐標(biāo)為:(3,﹣3)或(﹣3,3).
故選:D.
首先利用平移的性質(zhì)得出點(diǎn)P1的坐標(biāo),再利用旋轉(zhuǎn)的性質(zhì)得出符合題意的答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班同學(xué)為了解2011年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請(qǐng)解答以下問題:
(1)把下面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | 0.24 | |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | |
25<x≤30 | 2 | 0.04 |
(2)求該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥DC,AC和BD相交于點(diǎn)O,E是CD上一點(diǎn),F(xiàn)在OD上一點(diǎn),且∠1=∠A.
(1)求證:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(3,3),D(1,4).
(1)描出A、B、C、D四點(diǎn)的位置,并順次連接A、B、C、D;
(2)四邊形ABCD的面積是;(直接寫出結(jié)果)
(3)把四邊形ABCD向左平移6個(gè)單位,再向下平移1個(gè)單位得到四邊形A′B′C′D′在圖中畫出四邊形A′B′C′D′,并寫出A′B′C′D′的坐標(biāo).[(1)(3)問的圖畫在同一坐標(biāo)系中].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名畫家達(dá)芬奇驗(yàn)證勾股定理的方法如下:
①在一張長方形的紙板上畫兩個(gè)邊長分別為a、b的正方形,并連接BC、FE.
②沿ABCDEF剪下,得兩個(gè)大小相同的紙板Ⅰ、Ⅱ,請(qǐng)動(dòng)手做一做.
③將紙板Ⅱ翻轉(zhuǎn)后與Ⅰ拼成其他的圖形.
④比較兩個(gè)多邊形ABCDEF和A′B′C′D′E′F′的面積,你能驗(yàn)證勾股定理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,BC=12,BC邊上的中線AD=8.
(1)證明:△ABC為等腰三角形;
(2)點(diǎn)H在線段AC上,試求AH+BH+CH的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)F為對(duì)角線BD上一點(diǎn),點(diǎn)E為AB的延長線上一點(diǎn),DF=BE,CE=CF.求證:(1)△CFD≌△CEB;(2)∠CFE=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CEF均為等腰直角三角形,E在△ABC內(nèi),∠CAE+∠CBE=90°,連接BF.
(1)求證:△CAE∽△CBF.
(2)若BE=1,AE=2,求CE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com