【題目】如圖,菱形的邊長(zhǎng)為,點(diǎn)在對(duì)角線上(點(diǎn)在點(diǎn)的左側(cè)),且則的最小值為____.
【答案】
【解析】
作DM∥AC,使得DM=EF=1,連接BM交AC于F,由四邊形DEFM是平行四邊形,推出DE=FM,推出DE+BF=FM+FB=BM,根據(jù)兩點(diǎn)之間線段最短可知,此時(shí)DE+FB最短,由四邊形ABCD是菱形,在Rt△BDM中,根據(jù)BM=計(jì)算即可.
解:如圖,作DM∥AC,使得DM=EF=1,連接BM交AC于F,
∵DM=EF,DM∥EF,
∴四邊形DEFM是平行四邊形,
∴DE=FM,
∴DE+BF=FM+FB=BM,
根據(jù)兩點(diǎn)之間線段最短可知,此時(shí)DE+FB最短,
∵四邊形ABCD是菱形,AB=3,∠BAD=60°
∴AD=AB,
∴△ABD是等邊三角形,
∴BD=AB=3,
在Rt△BDM中,BM=
∴DE+BF的最小值為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(,為常數(shù)且)經(jīng)過點(diǎn),頂點(diǎn)為,經(jīng)過點(diǎn)的直線與軸平行,且與交于點(diǎn),(在的右側(cè)),與的對(duì)稱軸交于點(diǎn),直線經(jīng)過點(diǎn).
(1)用表示及點(diǎn)的坐標(biāo);
(2)的值是否是定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由;
(3)當(dāng)直線經(jīng)過點(diǎn)時(shí),求的值及點(diǎn),的坐標(biāo);
(4)當(dāng)時(shí),設(shè)的外心為點(diǎn),則
①求點(diǎn)的坐標(biāo);
②若點(diǎn)在的對(duì)稱軸上,其縱坐標(biāo)為,且滿足,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點(diǎn),連接AC、CB,過O作EO∥CB并延長(zhǎng)EO到F,使EO=FO,連接AF并延長(zhǎng),AF與CB的延長(zhǎng)線交于D.求證:AE2=FGFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出“遼陽(yáng)—葫蘆島海濱觀光一日游”項(xiàng)目,團(tuán)隊(duì)人均報(bào)名費(fèi)用y(元)與團(tuán)隊(duì)報(bào)名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88元.旅行社收到的團(tuán)隊(duì)總報(bào)名費(fèi)用為w(元).
(1)直接寫出當(dāng)x≥20時(shí),y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)兒童節(jié)當(dāng)天旅行社收到某個(gè)團(tuán)隊(duì)的總報(bào)名費(fèi)為3000元,報(bào)名旅游的人數(shù)是多少?
(3)當(dāng)一個(gè)團(tuán)隊(duì)有多少人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多?最多總報(bào)名費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某貨站傳送貨物的平面示意圖如圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶長(zhǎng)為.
(1)求新傳送帶的長(zhǎng)度;
(2)如果需要在貨物著地點(diǎn)的左側(cè)留出的通道,試判斷距離點(diǎn)處的貨物是否需要挪走,并說明理由.(說明:(1),(2)的計(jì)算結(jié)果精確到,參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長(zhǎng)為
問題探究
(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動(dòng)點(diǎn),求E、P之間的最大距離;
問題解決
(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對(duì)的劣弧場(chǎng)地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測(cè)得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請(qǐng)你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)圖象的對(duì)稱軸為與軸交于點(diǎn)C,與x軸交于點(diǎn)點(diǎn)給出下列結(jié)論:①二次函數(shù)的最大值為;②;③;④當(dāng)時(shí),;⑤其中正確的個(gè)數(shù)是( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交⊙O于E,D為BE延長(zhǎng)線上一點(diǎn),且DE=FE.
(1)求證:AD為⊙O切線;
(2)若AB=20,tan∠EBA=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,AB=4,點(diǎn)D為拋物線的頂點(diǎn).
(1)求點(diǎn)A和頂點(diǎn)D的坐標(biāo);
(2)將點(diǎn)D向左平移4個(gè)單位長(zhǎng)度,得到點(diǎn)E,求直線BE的表達(dá)式;
(3)若拋物線y=ax2﹣6與線段DE恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com