【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

【答案】D
【解析】軸對稱圖形是圖形沿著某條直線折疊,直線兩旁的部分能重合,中心對稱圖形是圖形繞著某點(diǎn)旋轉(zhuǎn)180度與它本身重合,所以給出的圖形中,A,B選項(xiàng)是中心對稱圖形,不是軸對稱圖形;C只是軸對稱圖形,D既是軸對稱圖形,又是中心對稱圖形,故本題正確的選項(xiàng)是D.


【考點(diǎn)精析】本題主要考查了軸對稱圖形和中心對稱及中心對稱圖形的相關(guān)知識點(diǎn),需要掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量校園內(nèi)一棵不可攀的樹的高度,數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索實(shí)踐:根據(jù)《物理學(xué)》中光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如圖的測量方案:把鏡子放在離樹(AB)9米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時恰好在鏡子里看到樹梢頂點(diǎn)A,再用皮尺量得DE=2.7米,觀察者目高CD=1.8米,則樹(AB)的高度為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)進(jìn)行社會調(diào)查,隨機(jī)抽查了某個地區(qū)的20個家庭的收入情況,并繪制了統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖給出的信息回答:

(1)填寫完成下表:

年收入(萬元)

0.6

0.9

1.0

1.1

1.2

1.3

1.4

9.7

戶  數(shù)

1

1

2

4

20個家庭的年平均收入為   萬元;

(2)樣本中的中位數(shù)是   萬元,眾數(shù)是   萬元;

(3)在平均數(shù)、中位數(shù)兩數(shù)中,   更能反映這個地區(qū)家庭的年收入水平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補(bǔ)充完整,原題:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長線交射線CD于點(diǎn)G. 若 , 求 的值.

(1)嘗試探究:
在圖1中,過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則AB和EH的數(shù)量關(guān)系是 ,
CG和EH的數(shù)量關(guān)系是 的值是
(2)類比延伸:如圖2,在原題條件下,若 (m>0)則 的值是(用含有m的代數(shù)式表示),試寫出解答過程
(3)拓展遷移:如圖3,梯形ABCD中,DC∥AB,點(diǎn)E是BC的延長線上的一點(diǎn),AE和BD相交于點(diǎn)F,若 (a>0,b>0)則 的值是(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點(diǎn),連結(jié)BE并延長交CD的延長線于點(diǎn)F.

(1)請連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示41的兩點(diǎn)之間的距離為|4﹣1|=   ;表示5和﹣2兩點(diǎn)之間的距離為|5﹣(﹣2)|=|5+2|=   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|m﹣n|,如果表示數(shù)a和﹣2的兩點(diǎn)之間的距離是3,那么a=   

(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當(dāng)a=   時,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為⊙O的直徑,AC是弦, ,
(1)在圖1中,P為直徑BA延長線上的一點(diǎn),當(dāng)CP與⊙O相切時,求PO的長;

(2)如圖2,一動點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按逆時針方向運(yùn)動一周,當(dāng) 時,求半徑OM所掃過的扇形的面積.

查看答案和解析>>

同步練習(xí)冊答案