【題目】已知△ABC.
(1)如圖(1),∠C>∠B,若 AD⊥BC 于點 D,AE 平分∠BAC,你能找出∠EAD 與∠B,∠C 之間的數(shù)量關(guān)系嗎?并說明理由.
(2)如圖(2),AE 平分∠BAC,F 為 AE 上一點,FM⊥BC 于點 M,∠EFM 與∠B,∠C之間有何數(shù)量關(guān)系?并說明理由.
【答案】(1)∠EAD= (∠C-∠B);理由見解析;(2)∠EFM= (∠C-∠B) ;理由見解析.
【解析】
(1)分析題意,觀察圖形可知∠EAD=∠EAC-∠DAC,即若用∠B、∠C分別表示出∠EAC、∠DAC即可;首先根據(jù)三角形內(nèi)角和定理及角平分線的定義即可用∠B、∠C表示出∠EAV,再根據(jù)直角三角形兩銳角互余可得∠DAC=90°-∠C,據(jù)此可解答;
對于(2)過點A作AD⊥BC于D,根據(jù)兩直線平行,同位角相等可得∠EFM=∠EAD,再結(jié)合(1)的結(jié)論進(jìn)行解答即可
解:(1)∵AE 平分∠BAC,
∴∠EAC=∠BAC= (180-∠B-∠C),
又∵AD⊥BC,
∴∠DAC=90-∠C,
∴∠EAD=∠EAC-∠DAC= (180-∠B-∠C)-(90-∠C)= (∠C-∠B),
即∠EAD= (∠C-∠B);·
(2)如圖,過點 A 作 AD⊥BC 于 D,
∵FM⊥BC,
∴AD∥FM,
∴∠EFM=∠EAD= (∠C-∠B)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點關(guān)于x軸的對稱點和點關(guān)于y軸的對稱點相同,則點關(guān)于x軸對稱的點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).
(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P 為 ;
(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;
(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下關(guān)于x的各個多項式中,a,b,c,m,n均為常數(shù).
(1)根據(jù)計算結(jié)果填寫下表:
二次項系數(shù) | 一次項系數(shù) | 常數(shù)項 | |
(2x + l)(x + 2) | 2 | 2 | |
(2x + 1)(3x - 2) | 6 | -2 | |
(ax + b)( mx + n) | am | bn |
(2)已知(x+ 3)2(x + mx +n)既不含二次項,也不含一次項,求m + n的值.
(3) 多項式M與多項式x2-3x + 1的乘積為2x4+ ax3 + bx2+ cx -3,則2 a +b + c的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AB=AC=6,∠BAC=90°,點D、E為BC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點A、C的坐標(biāo)分別是(0,4),(1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點C、A、A′,求此拋物線的解析式;
(2)點M是第一象限內(nèi)拋物線上的一動點,問點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com