【題目】如圖,在中,,、分別是的中點(diǎn),連接,過(guò)的延長(zhǎng)線于.若四邊形的周長(zhǎng)是,的長(zhǎng)為,求的周長(zhǎng).

【答案】30cm

【解析】

由三角形中位線定理推知EDFC,2DEBC,然后結(jié)合已知條件“EFDC”,利用兩組對(duì)邊相互平行得到四邊形DCFE為平行四邊形,根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半得到AB2DC,即可得出四邊形DCFE的周長(zhǎng)=ABBC,故BC25AB,然后根據(jù)勾股定理即可求得.

解:如圖,∵D、E分別是ABAC的中點(diǎn),FBC延長(zhǎng)線上的一點(diǎn),

EDRtABC的中位線,

EDFCBC2DE,

EFDC

∴四邊形CDEF是平行四邊形;

DCEF

DCRtABC斜邊AB上的中線,

AB2DC,

∴四邊形DCFE的周長(zhǎng)=ABBC

∵四邊形DCFE的周長(zhǎng)為25cm,AC的長(zhǎng)5cm

BC25AB,

∵在RtABC中,∠ACB90°,

AB2BC2AC2,即AB2=(25AB252

解得,AB13cm,∴BC=12cm,

的周長(zhǎng)=13+12+5=30cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,已知AB=AC,BAC和∠ACB的平分線相交于點(diǎn)D,ADC=125°,求∠ACB和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,∠BAC=100°.

1)若∠ABC和∠ACB的角平分線交于點(diǎn)O,如圖1所示,試求∠BOC的大小;

2)若∠ABC和∠ACB的三等分線(即將一個(gè)角平均分成三等分的射線)相交于O,O1,如圖2所示,試求∠BOC的大;

3)如此類推,若∠ABC和∠ACBn等分線自下而上依次相交于O,O1O2…,如圖3所示,試探求∠BOC的大小與n的關(guān)系,并判斷當(dāng)∠BOC=170°時(shí),是幾等分線的交線所成的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)ABC邊上的點(diǎn)A′重合,折痕為BE,再沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)BAD邊上的點(diǎn) B重合,折痕為EF,連結(jié),,則的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線ABDC,點(diǎn)P為平面上一點(diǎn),連接APCP.

(1)如圖1,點(diǎn)P在直線AB、CD之間,當(dāng)∠BAP=60°,DCP=20°時(shí),求∠APC.

(2)如圖2,點(diǎn)P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點(diǎn)K,寫(xiě)出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線相交于點(diǎn)K,AKC與∠APC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M在y軸上運(yùn)動(dòng).

(1)求直線AB的函數(shù)解析式;

(2)動(dòng)點(diǎn)M在y軸上運(yùn)動(dòng),使MA+MB的值最小,求點(diǎn)M的坐標(biāo);

(3)在y軸的負(fù)半軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園手機(jī)現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,六一期間,記者隨機(jī)調(diào)查了某校若干名初四學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下兩幅統(tǒng)計(jì)圖.

(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全條形圖;

(2)求扇形圖中表示家長(zhǎng)贊成的圓心角的度數(shù);

(3)若南崗區(qū)共有初四學(xué)生10000名,請(qǐng)估計(jì)在這些學(xué)生中,對(duì)中學(xué)生帶手機(jī)現(xiàn)象持無(wú)所謂態(tài)度的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀并解答問(wèn)題:

數(shù)學(xué)大師的名題與方程

歐拉是18世紀(jì)瑞士著名的數(shù)學(xué)大師.他的一生都致力于數(shù)學(xué)各個(gè)領(lǐng)域的研究,并取得非凡的成就.在他所著的《代數(shù)學(xué)入門》一書(shū)中就曾經(jīng)出現(xiàn)過(guò)好幾道和遺產(chǎn)分配有關(guān)的數(shù)學(xué)問(wèn)題.他構(gòu)思這些問(wèn)題的初衷,正是為了強(qiáng)化方程解題的適用和便利.

請(qǐng)用適當(dāng)?shù)姆椒ń獯鹣旅鎲?wèn)題:

父親死后,四個(gè)兒子按下述方式分了他的財(cái)產(chǎn):老大拿了財(cái)產(chǎn)的一半少3000英鎊:老二拿了財(cái)產(chǎn)的1000英鎊;老三拿了恰好是財(cái)產(chǎn)的;老四拿了財(cái)產(chǎn)的加上600英鎊.問(wèn)整個(gè)財(cái)產(chǎn)有多少?每個(gè)兒子各分了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一副直角三角板放在同一條直線AB上,其中ONM=30°,OCD=45°.

(1)將圖中的三角板OMN沿BA的方向平移至圖的位置,MN與CD相交于點(diǎn)E,求CEN的度數(shù);

(2)將圖中的三角板OMN繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至如圖,當(dāng)CON=5DOM時(shí),MN與CD相交于點(diǎn)E,請(qǐng)你判斷MN與BC的位置關(guān)系,并求CEN的度數(shù);

(3)將圖中的三角板OMN繞點(diǎn)O按每秒5°的速度按逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,三角板MON運(yùn)動(dòng)幾秒后直線MN恰好與直線CD平行.

(4)將如圖位置的兩塊三角板同時(shí)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),速度分別每秒20°和每秒10°,當(dāng)其中一個(gè)三角板回到初始位置時(shí),兩塊三角板同時(shí)停止轉(zhuǎn)動(dòng).經(jīng)過(guò)___________秒后邊OC與邊ON互相垂直.(直接寫(xiě)出答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案