【題目】已知,點(diǎn)A(8,0)、B(6,0).將線段OB繞著原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)角度α到OC,連接AC.將AC繞著點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)角度β至AD,連接OD
(1)當(dāng)α=30°,β=60°時(shí),求OD的長(zhǎng)
(2)當(dāng)α=60°,β=120°時(shí),求OD的長(zhǎng)
(3)已知E(10,0),當(dāng)β=90°時(shí),改變的大小,求ED的最大值
【答案】(1);(2);(3)最大值為
【解析】
(1)將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)至,連接,,證明,再證明后利用勾股定理求解即可;
(2)將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)至,連接,,證明,所以.再證明,利用勾股定理即可求出;
(3)將繞順時(shí)針旋轉(zhuǎn)到,可得點(diǎn)N(8,8),利用兩點(diǎn)間的距離公式可求出,當(dāng)點(diǎn)D在線段NE上時(shí),DE有最小值,當(dāng)D在線段NE的延長(zhǎng)線上時(shí),DE有最大值,最大值為.
解:(1)如圖,將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)至,連接,,
則是等邊三角形,
∴
∴
∴,即
∴
∴
∵
∴
∴
∴;
(2)如圖,將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)至,連接,,則是等邊三角形,
∵
∴,
∵
∴
∴
∴
∴
∵∵
∴
∴;
(3)如圖,將繞順時(shí)針旋轉(zhuǎn)到,連接AN、DN、EN,可得點(diǎn)N(8,8),
則
由(1)得,
∴
∴當(dāng)點(diǎn)D在線段NE上時(shí),DE有最小值,最小值為:;
當(dāng)D在線段NE的延長(zhǎng)線上時(shí),DE有最大值,最大值為:;
∴DE最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從D,E兩處測(cè)得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生每月的零用錢(qián)情況,從甲、乙、丙三個(gè)學(xué)校各隨機(jī)抽取200名學(xué)生,調(diào)查了他們的零用錢(qián)情況(單位:元)具體情況如下:
學(xué)校頻數(shù)零用錢(qián) | 100≤x<200 | 200≤x<300 | 300≤x<400 | 400≤x<500 | 500以上 | 合計(jì) |
甲 | 5 | 35 | 150 | 8 | 2 | 200 |
乙 | 16 | 54 | 68 | 52 | 10 | 200 |
丙 | 0 | 10 | 40 | 70 | 80 | 200 |
在調(diào)查過(guò)程中,從__(填“甲”,“乙”或“丙”)校隨機(jī)抽取學(xué)生,抽到的學(xué)生“零用錢(qián)不低于300元”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形 ABCD 內(nèi)接于⊙O,連接 AC、BD,∠BAD+2∠ACB=180°.
(1)如圖 1,求證:點(diǎn) A 為弧 BD 的中點(diǎn);
(2)如圖 2,點(diǎn) E 為弦 BD 上一點(diǎn),延長(zhǎng) BA 至點(diǎn) F,使得 AF=AB,連接 FE 交 AD 于點(diǎn) P,過(guò)點(diǎn) P 作 PH⊥AF 于點(diǎn) H,AF=2AH+AP,求證:AH:AB=PE:BE;
(3)在(2)的條件下,如圖 3,連接 AE,并延長(zhǎng) AE 交⊙O 于點(diǎn) M,連接 CM,并延長(zhǎng) CM 交 AD 的延長(zhǎng)線于點(diǎn) N,連接 FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求 AH 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)貨價(jià)為30元的書(shū)包以40元售出,平均每月能售出600個(gè),調(diào)查表明:這種書(shū)包的售價(jià)每上漲1元,其銷(xiāo)售量就減少10個(gè).
(1)為了使平均每月有10000元的銷(xiāo)售利潤(rùn),這種書(shū)包的售價(jià)應(yīng)定為多少元?
(2)10000元的利潤(rùn)是否為最大利潤(rùn)?如果是,請(qǐng)說(shuō)明理由;如果不是,請(qǐng)求出最大利潤(rùn),并指出此時(shí)書(shū)包的售價(jià)為多少元?
(3)請(qǐng)分析并回答售價(jià)在什么范圍內(nèi)商家就可以獲得利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在邊BC上,BD=6,CD=2,點(diǎn)P是邊AB上一點(diǎn),則PC+PD的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⑴如圖1,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),∠A=∠DCE=∠CBE,DC=CE.求證:AC=BE.
⑵如圖2,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),∠A=∠DCE=∠CBE=90°.
①求證:;②連接BD,若∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值;
⑶如圖3,在△ABD中,點(diǎn)C在AB邊上,且∠ADC=∠ABD,點(diǎn)E在BD邊上,連接CE,∠BCE+∠BAD=180°,AC=3,BC=,CE=,直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點(diǎn),且AD=CE,則∠ADC+∠BEA=( )
A.180°B.170°C.160°D.150°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com