如圖,AD是△ABC的邊BC上的中線,點E在AD上,AE=2DE,若△ABE的面積是4,那么△ABC的面積是( 。
分析:△ABD與△ABE是同高的兩個三角形;△ABD與△ADC是等底同高的兩個三角形.
解答:解:∵AE=2DE,
∴AD=3DE,
∴S△ABE:S△ABD=AE:AD=2DE:3DE=2:3.
又∵△ABE的面積是4,
∴S△ABD=6.
∵AD是△ABC的邊BC上的中線,
∴BD=CD,
∴S△ABD:S△ADC=BD:CD=1:1,
∴S△ADC=S△ABD=6,
∴S△ABC=S△ADC+S△ABD=6+6=12.
故選C.
點評:本題考查了三角形的面積.中線能把三角形的面積平分,利用這個結論就可以求出三角形△ABC的面積.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案