【題目】直線y=x﹣2分別交x、y軸于C、A,物線y=﹣x2+x﹣2經(jīng)過A、C兩點(diǎn),交x軸于另外一點(diǎn)B.點(diǎn)E為線段AC上一點(diǎn),點(diǎn)F為線段AC延長線一點(diǎn),AE=CF,點(diǎn)P為AC上方拋物線上的一點(diǎn),當(dāng)△PEF是以EF為底邊的等腰三角形,且tan∠PFE=時(shí),求點(diǎn)P的坐標(biāo).
【答案】P(2,1).
【解析】
根據(jù)直線分別交x、y軸于C、A,即可得到A(0,﹣2),B(1,0),C(4,0),再根據(jù),即可得到P到EF的距離,過點(diǎn)P作PQ∥EF,交y軸于Q,依據(jù)EF=AC,可得S△QAC=S△PEF,進(jìn)而得出直線PQ的解析式為:,最后根據(jù)方程組的解即可得到點(diǎn)P的坐標(biāo).
解:∵直線分別交x、y軸于C、A,
∴A(0,﹣2),B(1,0),C(4,0),
∵AE=CF,
∴
又∵
∴P到EF的距離
過點(diǎn)P作PQ∥EF,交y軸于Q,
設(shè)Q(0,m),(m>﹣2)
∵EF=AC,
∴S△QAC=S△PEF,
即
∴解得m=0,
∴直線PQ的解析式為:
解方程組 ,可得
∴P(2,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC∽△ADE,AE=5cm,EC=3cm,BC=7cm,∠BAC=45°,∠C=40°.
(1)求∠AED和∠ADE的大;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從二次函數(shù)y=ax2+bx+c的圖像(如圖)中得出了下面的六條信息:①a<0;②c=0;③函數(shù)的最小值為-3;④二次函數(shù)y=ax2+bx+c的圖像與x軸交于點(diǎn)(0,0),(2.5,0);⑤當(dāng)0<x1<x2<2時(shí),y1<y2;⑥對稱軸是直線x=2.你認(rèn)為其中正確的是________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)若∠A=50°,求∠DBC的度數(shù).
(2)若AB=3,△CBD的周長為12,求△ABC得周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大媽加盟了“紅紅”全國燒烤連鎖店,該公司的宗旨是“薄利多銷”,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,∠A=30°,∠B=90°,AC=8,點(diǎn) D 在邊 AB, 且 BD=,點(diǎn) P 是△ABC 邊上的一個(gè)動(dòng)點(diǎn),若 AP=2PD 時(shí),則 PD的長是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):當(dāng),時(shí),∵,∴,當(dāng)且僅當(dāng)時(shí)取等號.請利用上述結(jié)論解決以下問題:
(1)當(dāng)時(shí),的最小值為_______;當(dāng)時(shí),的最大值為__________.
(2)當(dāng)時(shí),求的最小值.
(3)如圖,四邊形ABCD的對角線AC ,BD相交于點(diǎn)O,△AOB、△COD的面積分別為4和9,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3過點(diǎn)A(5,m)且與y軸交于點(diǎn)B,把點(diǎn)A向左平移2個(gè)單位,再向上平移4個(gè)單位,得到點(diǎn)C.過點(diǎn)C且與y=2x平行的直線交y軸于點(diǎn)D.
(1)求直線CD的解析式;
(2)直線AB與CD交于點(diǎn)E,將直線CD沿EB方向平移,平移到經(jīng)過點(diǎn)B的位置結(jié)束,求直線CD在平移過程中與x軸交點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在ΔABC和ΔADE中,AB=AC,AD=AE,∠BAC=∠DAE,,且點(diǎn)B,A,D在同一條直線上,連接BE,CD,M,N分別為BE,CD的中點(diǎn), 連接AM,AN,MN.
⑴.求證:BE=CD
⑵.求證:ΔAMN是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com