【題目】已知關于x的二次函數(shù)y=x2﹣(2m+3)x+m2+2

(1)若二次函數(shù)y的圖象與x軸有兩個交點,求實數(shù)m的取值范圍.

(2)設二次函數(shù)y的圖象與x軸的交點為A(x1,0),B(x2,0),且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.

【答案】(1)m>- (2)m=2

【解析】分析:1)利用一元二次方程根的判別式計算;

2)利用一元二次方程根與系數(shù)的關系列出方程,解方程即可.

詳解:(1)由題意得[﹣(2m+3]24×1×m2+20解得m;

2)由根與系數(shù)的關系可知,x1+x2=2m+3x1x2=m2+2,x12+x22=31+|x1x2|,(x1+x222x1x2=31+|x1x2|,(2m+322×m2+2)=31+m2+2,整理得m2+12m28=0,解得m1=2,m2=﹣14(舍去)m=2,滿足x12+x22=31+|x1x2|

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中∠A=60°,BMAC于點M,CNAB于點N,PBC邊的中點,連接PM,PN,則下列結論:①PM=PN;③△PMN為等邊三角形;④當∠ABC=45°時,BN=PC.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB4,AD3,矩形內(nèi)部有一動點P滿足S矩形ABCD3SPAB,則PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A,B的坐標分別為A(a0),B(b0),且a,b滿足|2a+6|+(2a3b+12)20,現(xiàn)同時將點A,B分別向左平移2個單位,再向上平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD

(1)請直接寫出A、B、C、D四點的坐標;

(2)如圖2,點P是線段AC上的一個動點,點Q是線段CD的中點,連接PQ,PO,當點P在線段AC上移動時(不與A,C重合),請找出∠PQD,∠OPQ,∠POB的數(shù)量關系,并證明你的結論;

(3)在坐標軸上是否存在點M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點M的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的一個內(nèi)角∠BAD=80°,對角線AC,BD相交于點O,點EAB上,且BE=BO,則∠EOA=___________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列兩個等式:,給出定義如下:我們稱使等式成立的一對有理數(shù)有趣數(shù)對,記為如:數(shù)對,都是有趣數(shù)對

1)數(shù)對,中是有趣數(shù)對的是   ;

2)若有趣數(shù)對,求的值;

3)請再寫出一對符合條件的有趣數(shù)對   ;(注意:不能與題目中已有的有趣數(shù)對重復)

4)若有趣數(shù)對的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是直線上的一點,將一直角三角板如圖擺放,過點作射線平分.

1)如圖1,如果,依題意補全圖形,求度數(shù);

2)當直角三角板繞點順時針旋轉一定的角度得到圖2,使得直角邊在直線的上方,若,其他條件不變,請你直接用含的代數(shù)式表示的度數(shù)為

3)當直角三角板繞點繼續(xù)順時針旋轉一周,回到圖1的位置,在旋轉過程中你發(fā)現(xiàn)之間有怎樣的數(shù)量關系?請直接寫出你的發(fā)現(xiàn): .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如果兩個三角形的兩組對應邊相等,且它們的夾角互補,我們就把其中一個三角形叫做另一個三角形的夾補三角形,同時把第三邊的中線叫做夾補中線.例如:圖1中,ABCADE的對應邊ABAD,ACAE,∠BAC+DAE180°,AFDE邊的中線,則ADE就是ABC夾補三角形,AF叫做ABC夾補中線

特例感知:

1)如圖2、圖3中,ABCADE是一對夾補三角形AFABC夾補中線;

①當ABC是一個等邊三角形時,AFBC的數(shù)量關系是:   ;

②如圖3ABC是直角三角形時,∠BAC90°,BCa時,則AF的長是   

猜想論證:

2)在圖1中,當ABC為任意三角形時,猜想AFBC的關系,并給予證明.

拓展應用:

3)如圖4,在四邊形ABCD中,∠DCB90°,∠ADC150°,BC2AD6,CD,若PAD是等邊三角形,求證:PCDPBA夾補三角形,并求出它們的夾補中線的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應“弘揚傳統(tǒng)文化”的號召,萬州區(qū)某中學舉行了一次中學生詩詞大賽活動.小何同學對他所在八年級一班參加詩詞大賽活動同學的成績進行了整理,成績分別100分、90分、80分、70分,并繪制出如下的統(tǒng)計圖.

請根據(jù)以上提供的信息,解答下列問題:

1)該校八年級(1)班參加詩詞大賽成績的眾數(shù)為______分;并補全條形統(tǒng)計圖.

2)求該校八年級(1)班參加詩詞大賽同學成績的平均數(shù);

3)結合平時成績、期中成績和班級預選成績(如下表),年級擬從該班小何和小王的兩位同學中選一名學生參加區(qū)級決賽,按的比例計算兩位同學的最終得分,請你根據(jù)計算結果確定選誰參加區(qū)級決賽.

學生姓名

平時成績

期中成績

預選成績

小何

80

90

100

小王

90

100

90

查看答案和解析>>

同步練習冊答案