如圖,已知,AB=AC,過點A作AG⊥BC,垂足為G,延長AG交BM于D,過點A做AN∥BM,過點C作EF∥AD,與射線AN、BM分別相交于點F、E。

(1)求證:△BCE∽△AGC;

(2)點P是射線AD上的一個動點,設(shè)AP=x,四邊形ACEP的面積是y,若AF=5,。

①求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

②當點P在射線AD上運動時,是否存在這樣的點P,使得△CPE的周長為最?若存在,求出此時y的值,若不存在,請說明理由。

 

【答案】

(1)由EF∥AD可得∠AGC=∠BCE,由AB=AC可得∠ABC=∠ACB,再根據(jù)同角的余角相等可得∠ACB=∠BEC,即可證得結(jié)論;

(2)(x>0);

(3)當點P運動到點D時,B、P、E三點共線時,周長最小為

【解析】

試題分析:(1)由EF∥AD可得∠AGC=∠BCE,由AB=AC可得∠ABC=∠ACB,再根據(jù)同角的余角相等可得∠ACB=∠BEC,即可證得結(jié)論;

(2)由題意可得四邊形ACEP為梯形,根據(jù)梯形的面積公式即可得到結(jié)果;

(3)由圖可得當點P運動到點D時,B、P、E三點共線時周長最小,根據(jù)勾股定理即可求得結(jié)果.

(1)∵EF∥AD

∴∠AGC=∠BCE,∠ADB=∠BEC

∵AB=AC

∴∠ABC=∠ACB

,AG⊥BC

∴∠ABC+∠GBD=90°,∠ADB+∠GBD=90°

∴∠ABC=∠ADB

∴∠ACB=∠BEC

∴△BCE∽△AGC;

(2)由題意得四邊形ACEP為梯形

∴y關(guān)于x的函數(shù)關(guān)系式為(x>0);

(3)由圖可得當點P運動到點D時,B、P、E三點共線時,周長最小為.

考點:相似三角形的判定和性質(zhì),動點問題的應(yīng)用

點評:動點問題的應(yīng)用是初中數(shù)學(xué)的重點和難點,是中考的熱點,尤其在壓軸題中極為常見,要特別注意.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知線段AB=10cm,點CAB上任一點,點M、N分別是ACCB的中點, 則線段MN的長度為( ▲ )

 

A.6cm           B.5cm         C.4cm          D.3cm

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆江蘇泰州七年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知線段AB=9cm,點C是AB的中點,點D在直線AB上,且AB=3BD,求線段CD的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013江蘇省淮安市七年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,已知線段AB=4,延長線段ABC,使BC=2AB,點DAC的中點,則DC的長等于      .

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013年福建仙游承璜第二中學(xué)七年級上期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,已知線段AB=10cm,點C是AB上任一點,點M、N分別是AC和CB的中點,則MN的長度為             cm.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇南京市七年級上學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:選擇題

如圖,已知線段AB=10cm,點CAB上任一點,點M、N分別是ACCB的中點, 則線段MN的長度為( ▲ )

 

A.6cm            B.5cm          C.4cm           D.3cm

 

查看答案和解析>>

同步練習(xí)冊答案