【題目】如圖,經(jīng)過原點的拋物線與軸交于另一點,在第一象限內(nèi)與直線交于點.
(1)求這條拋物線的解析式;
(2)在第四象限內(nèi)的拋物線上有一點,滿足以,,為頂點的三角形的面積為1,求點的坐標(biāo).
【答案】(1);(2).
【解析】
(1)將B(2,m)代入y=x,求出B,再將A與B代入拋物線即可求函數(shù)解析式;
(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點,設(shè)C(t,2t2-3t),則E(t,0),D(t,t),可求OE=t,BF=2-t,CD=t-(2t2-3t)=-2t2+4t,再由S△OBC=S△CDO+S△CDB=CDOE+CDBF=(-2t2+4t)(t+2-t)=-2t2+4t,并且△OBC的面積為1,即可求出t的值,進而確定點C坐標(biāo);
解:(1)∵在直線上,
∴,
∴,
把、兩點坐標(biāo)代入拋物線解析式可得,
解得,
∴拋物線解析式為;
(2)如圖1,過作軸,交軸于點,交于點,過作于點,
∵點是拋物線上第四象限的點,
∴可設(shè),則,,
∴,,,
∴,
∵的面積為1,
∴,
解得,
當(dāng)時,(舍去);
當(dāng)時,,
∴;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由甲、乙兩個工程隊承包某校校園綠化工程,甲、乙兩隊單獨完成這項工程所需時間比是3︰2,兩隊合做6天可以完成.
。1)求兩隊單獨完成此項工程各需多少天?
(2)此項工程由甲、乙兩隊合做6天完成任務(wù)后,學(xué)校付給他們20000元報酬,若
按各自完成的工程量分配這筆錢,問甲、乙兩隊各得到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在邊OA上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求OE的長及經(jīng)過O,D,C三點拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長度的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長度的速度向點C運動,當(dāng)點P到達點B時,兩點同時停止運動,設(shè)運動時間為t秒,當(dāng)t為何值時,DP=DQ;
(3)若點N在(1)中拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AB=6,D是AC的中點,E是BC延長線上的一點,CE=CD,DF⊥BE,垂足為F.
(1)求證:BF=EF;
(2)求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形沿對角線剪開,再把沿方向平移得到,連接,,若,,,與重疊部分的面積為,則下列結(jié)論:①;②當(dāng)時,四邊形是菱形;③當(dāng)時,為等邊三角形;④.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,優(yōu)弧紙片所在的半徑為2,,點為優(yōu)弧上一點(點不與,重合),將圖形沿折疊,得到點的對稱點.當(dāng)與相切時,則折痕的長______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售某種商品,平均每天可售出20件,每件盈利40元,為了擴大銷售增加盈利,該商店采取了降價措施,在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件,當(dāng)每件商品降價多少元時,該商品每天的銷售利潤為1200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘗試探究:如圖,在中,,,E,F分別是BC,AC上的點,且,則______;
類比延伸:如圖,若將圖中的繞點C順時針旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,值是否發(fā)生變化?請僅就圖的情形寫出推理過程;
拓展運用:若,,在旋轉(zhuǎn)過程中,當(dāng)B,E,F三點在同一直線上時,請直接寫出此時線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應(yīng)點恰好落在邊上,點的對應(yīng)點為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com