【題目】如圖,優(yōu)弧紙片所在的半徑為2,,點為優(yōu)弧上一點(點不與,重合),將圖形沿折疊,得到點的對稱點.當(dāng)與相切時,則折痕的長______.
【答案】
【解析】
根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.
解:過點O作OH⊥AB,垂足為H,連接OB,如圖所示.
∵OH⊥AB,AB=,
∴AH=BH=,
∵OB=2,
∴OH=1.
∴點O到AB的距離為1.過點O作OG⊥BP,垂足為G,如圖所示.
∵BA′與⊙O相切,
∴OB⊥A′B.
∴∠OBA′=90°.
∵∠OBH=30°,
∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.
∴OG=OB=1.
∴BG=,
∵OG⊥BP,
∴BG=PG=,
∴BP=,
∴折痕PB的長為,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C、D依次在同一條直線上,點E、F分別在直線AD的兩側(cè),已知BE∥CF,∠A=∠D,AE=DF.
(1)求證:四邊形BFCE是平行四邊形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,當(dāng)四邊形BFCE是菱形時,菱形BFCE的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)號樓對外銷售,已知號樓某單元共層,一樓為商鋪,只租不售,二樓以上價格如下:第層售價為元/米,從第層起每上升一層,每平方米的售價提高元,反之每降一層,每平方米的售價降低元,已知該單元每套的面積均為米
優(yōu)惠活動
活動一:若一次性付清所有房款,降價,另免年物業(yè)費共元.
活動二:若購買者一次性付清所有房款,降價,無贈送.
(1)請在下表中,補(bǔ)充完整售價(元/米)與樓層(取正整數(shù))之間的的數(shù)關(guān)系式.
樓層(層) | 樓 | 樓 | ||
售價(元/米) | 不售 |
(2)某客戶想購買該單元第層的一套樓房,若他一次性付清購房款,可以參加如圖優(yōu)惠活動.請你幫助他分析哪種優(yōu)惠方案更合算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y2與x軸相交于A、B兩點(點A在點B的右側(cè)),與y軸相交于點C,對稱軸與x軸相交于點H,與AC相交于點T.
(1)點P是線段AC上方拋物線上一點,過點P作PQ∥AC交拋物線的對稱軸于點Q,當(dāng)△AQH面積最大時,點M、N在y軸上(點M在點N的上方),MN,點G在直線AC上,求PM+NGGA的最小值.
(2)點E為BC中點,EF⊥x軸于F,連接EH,將△EFH沿EH翻折得△EF'H,如圖所示2,再將△EF'H沿直線BC平移,記平移中的△EF'H為△E'F″H',在平移過程中,直線E'H'與x軸交于點R,則是否存在這樣的點R,使得△RF'H'為等腰三角形?若存在,求出R點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過原點的拋物線與軸交于另一點,在第一象限內(nèi)與直線交于點.
(1)求這條拋物線的解析式;
(2)在第四象限內(nèi)的拋物線上有一點,滿足以,,為頂點的三角形的面積為1,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點,C是OB的中點,D是AB上一點,四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過原點和,與軸交于另一點,且對稱軸是.
(1)求二次函數(shù)的表達(dá)式;
(2)若是上的一點,作,交于點,當(dāng)的面積最大時,求點的坐標(biāo);
(3)是軸上的點,過作軸,與拋物線交于點,過作軸于,是否存在點,使以點、、為頂點的三角形與以點、、為頂點的三角形相似?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,1)在拋物線y=x2+(2m+1)x﹣n﹣1上
(1)求m、n的關(guān)系式;
(2)若該拋物線的頂點在x軸上,求出它的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0)、B(3,0)、C(0,3)三點.
(1)求拋物線的解析式.
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N,若點M的橫坐標(biāo)為m,請用m的代數(shù)式表示MN的長.
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com