【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x + x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.

(1)判斷△ABC的形狀,并說明理由;

(2)經(jīng)過B. C兩點的直線交拋物線的對稱軸于點D,求D點的坐標(biāo)。

【答案】1)直角三角形;(2(,2).

【解析】

1)易求得拋物線與x軸交點,可得OA,OB的長度,即可求得AC、BC的長度,即可解題;

2)易求得直線BC的解析式和拋物線對稱軸,即可解題.

(1)ABC為直角三角形,理由如下:

當(dāng)y=x + x+3=0時,

解得:x= 3

OA=,OB=3,AB=4,

x=0時,y=3,

AC==2BC= =6,

AC+BC=12+36=48AB=48,

AC+BC=AB

∴△ABC為直角三角形;

(2)∵點B坐標(biāo)(3,0)、點C坐標(biāo)(0,3)

設(shè)直線BC解析式為y=kx+b,代入B. C點坐標(biāo)得: ,

解得:k=,b=3,

∴直線BC解析式為y=x+3

∵拋物線對稱軸為x==

∴點D縱坐標(biāo)為y=×+3=2,

∴點D坐標(biāo)為(,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點EAB的垂線,過點FCD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD∠BGC

1)求證:ADBC;

2)求證:△AGD∽△EGF

3)如圖2,若AD、BC所在直線互相垂直,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題情境

在綜合與實踐課上,老師組織同學(xué)們以三角形紙片的旋轉(zhuǎn)為主題開展數(shù)學(xué)活動.如圖1,現(xiàn)有矩形紙片ABCD,AB4cm,AD3cm.連接BD,將矩形ABCD沿BD剪開,得到ABDBCE.保持ABD位置不變,將BCE從圖1的位置開始,繞點B按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α0°≤α360°).

操作發(fā)現(xiàn)

1)在BCE旋轉(zhuǎn)過程中,連接AE,AC,則當(dāng)α時,的值是   ;

2)如圖2,將圖1中的BCE旋轉(zhuǎn),當(dāng)點E落在BA延長線上時停止旋轉(zhuǎn),求出此時的值;

實踐探究

3)如圖3,將圖2中的BCE繼續(xù)旋轉(zhuǎn),當(dāng)ACAE時停止旋轉(zhuǎn),直接寫出此時α的度數(shù),并求出AEC的面積;

4)將圖3中的BCE繼續(xù)旋轉(zhuǎn),則在某一時刻ACAE還能相等嗎?如果不能,則說明理由;如果能,請在圖4中畫出此時的BCE,連接ACAE,并直接寫出AEC的面積值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公園內(nèi)一涼亭,涼亭頂部是一圓錐形的頂蓋,立柱垂直于地面,在涼亭內(nèi)中央位置有一圓形石桌,某數(shù)學(xué)研究性學(xué)習(xí)小組,將此涼亭作為研究對象,并繪制截面示意圖,其中頂蓋母線ABAC的夾角為124°,涼亭頂蓋邊緣BC到地面的距離為2.4米,石桌的高度DE0.6米,經(jīng)觀測發(fā)現(xiàn):當(dāng)太陽光線與地面的夾角為42°時,恰好能夠照到石桌的中央E處(A、E、D三點在一條直線上),請你求出圓錐形頂蓋母線AB的長度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin62°≈0.88,tan42°≈0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:

(1)a=   ,b=   ,c=   ;

(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為   度;

(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學(xué)生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,過點作,交弦于點,交于點,且使.

1)求證:的切線;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點,且與直線交于BC兩點,點B的坐標(biāo)為

1)求拋物線的解析式;

2)點D為拋物線上位于直線上方的一點,過點D軸交直線于點E,點P為對稱軸上一動點,當(dāng)線段的長度最大時,求的最小值;

3)設(shè)點M為拋物線的頂點,在y軸上是否存在點Q,使?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA5,OC4,FAB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)yk0)的圖象與BC邊交于點E

1)當(dāng)FAB的中點時,求該函數(shù)的表達式;

2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文化源遠流長,文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為四大古典名著某中學(xué)為了解學(xué)生對四大名著的閱讀情況,就四大古典名著你讀完了幾部的問題在全校學(xué)生中進行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下尚不完整的統(tǒng)計圖.

請根據(jù)以上信息,解決下列問題

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是____部,中位數(shù)是_____部;

(2)扇形統(tǒng)計圖中“4所在扇形的圓心角為_____度;

(3)請將條形統(tǒng)計圖補充完整;

(4)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從中各自隨機選擇一部來閱讀,求他們恰好選中同一名著的概率.

查看答案和解析>>

同步練習(xí)冊答案