【題目】在平面直角坐標(biāo)系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C. D都在第一象限。
(1)當(dāng)點A坐標(biāo)為(4,0)時,求點D的坐標(biāo);
(2)求證:OP平分∠AOB;
(3)直接寫出OP長的取值范圍(不要證明).
【答案】(1)D(7,4);(2)見解析;(3) <OP5.
【解析】
(1)作DM⊥x軸于點M,由A(4,0)可以得出OA=4,由勾股定理就可以求出OB=3,再通過證明△AOB≌△DMA就可以求出AM=OB,DM=OA,從而求出點D的坐標(biāo).
(2)過P點作x軸和y軸的垂線,可通過三角形全等,證明OP是角平分線.
(3)因為OP在∠AOB的平分線上,就有∠POA=45°,就有OP= PE,在Rt△APE中運用三角函數(shù)就可以表示出PE的范圍,從而可以求出OP的取值范圍.
(1)作DM⊥x軸于點M,
∴∠AMD=90°.
∵∠AOB=90°,
∴∠AMD=∠AOB.
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠OAB+∠DAM=90.
∵∠OAB+∠OBA=90°,
∴∠DAM=∠OBA.
在△DMA和△AOB中,
,
∴△DMA≌△AOB,
∴AM=OB,DM=AO.
∵A(4,0),
∴OA=4,
∵AB=5,在Rt△AOB中由勾股定理得:
OB= =3.
∴AM=3,MD=4,
∴OM=7.
∴D(7,4);
(2)證明:作PE⊥x軸交x軸于E點,作PF⊥y軸交y軸于F點
∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,
∴∠FPB=∠EPA,
∵∠PFB=∠PEA,BP=AP,
∴△PBF≌△PAE,
∴PE=PF,
∴點P都在∠AOB的平分線上.
(3)作PE⊥x軸交x軸于E點,作PF⊥y軸交y軸于F點,則PE=h,設(shè)∠APE=α.
在直角△APE中,∠AEP=90°,PA=.
∴PE=PAcosα=cosα.
∵頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),
∴0°α<45°,
∴ <cosα1.
∴ <PE,
∵OP= PE,
∴ <OP5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仙居吾悅廣場于年月日開業(yè),商場內(nèi)兩家服裝店舉行開業(yè)大酬賓活動,甲乙兩家服裝店優(yōu)惠活動如下表:
購買服裝總金額(元) | 不超過元 | 超過元但不超過元的部分 | 元以上的部分 |
優(yōu)惠幅度 | 打折 | 打折 | 打折 |
乙服裝店優(yōu)惠活動:購買服裝總金額每滿元減元.
例如:購買總金額滿元減元,滿元減元,以此類推.
(1)若在兩家店購買服裝總金額都是元,哪家店實際付款更少?少多少?
(2)若購買服裝總金額小于元,選擇哪家店購買服裝更劃算?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE∥BF,∠A=60°,點P為射線AE上任意一點(不與點A重合),BC,BD分別平分∠ABP和∠PBF,交射線AE于點C,點D.
(1)圖中∠CBD= °;
(2)當(dāng)∠ACB=∠ABD時,∠ABC= °;
(3)隨點P位置的變化,圖中∠APB與∠ADB之間的數(shù)量關(guān)系始終為 ,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機接通電源就進(jìn)入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當(dāng)天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫格點,網(wǎng)格中有以格點A、B、C為頂點的△ABC,請你根據(jù)所學(xué)的知識回答下列問題:
(1)求△ABC的面積;(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:四邊形AECF是菱形;
(2)若AD=3,AE=5,則求菱形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com