【題目】如圖1,⊙O的直徑AB為4,C為⊙O上一個(gè)定點(diǎn),∠ABC=30°,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿半圓弧 向B點(diǎn)運(yùn)動(dòng)(點(diǎn)P與點(diǎn)C在直徑AB的異側(cè)),當(dāng)P點(diǎn)到達(dá)B點(diǎn)時(shí)運(yùn)動(dòng)停止,在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)C作CP的垂線(xiàn)CD交PB的延長(zhǎng)線(xiàn)于D點(diǎn).

(1)求證:△ABC∽△PDC
(2)如圖2,當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),求CD的長(zhǎng);

(3)設(shè)CD的長(zhǎng)為 .在點(diǎn)P的運(yùn)動(dòng)過(guò)程中, 的取值范圍為(請(qǐng)直接寫(xiě)出案).

【答案】
(1)證明:∵AB為⊙O的直徑,

∴∠ACB=90°,

∴∠ACB=∠PCD,

又∵∠A=∠P,

∴△ABC∽△PDC


(2)解:∵∠ABC=30°,AB=4,

∴BC= ,

∵△ABC∽△PDC,

∴∠D=∠ABC=30°,

∴CD=6


(3)解:如圖,

∵AB是直徑,∠ABC=30°,AB=4

∴∠ACB=90°,∠A=∠P=60°,AC=2,

∵CD⊥PC,

∴∠PCD=90°,CD=PCtan60°,

∵PC的最小值=AC=2,PC的最大值為直徑=4,

∴CD的最小值為2 ,最大值為4

∴2 ≤CD≤4


【解析】(1)利用圓周角定理,進(jìn)而用"兩角法"證出相似;(2)利用30度角的正切,由AB求出BC,再求出CD;(3)可用PC及三角函數(shù)表示出CD,當(dāng)PC最小時(shí),CD最小,CD最大,PC最大.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓周角定理的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD是菱形,AD=5,過(guò)點(diǎn)DAB的垂線(xiàn)DH,垂足為H,交對(duì)角線(xiàn)ACM,連接BM,且AH=3

1)求證:DM=BM;

2)求MH的長(zhǎng);

3如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為SS≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式;

4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng)時(shí)是否存在這樣的 t值,使∠MPB∠BCD互為余角,若存在,則求出t值,若不存,在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在矩形ABCD中,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,過(guò)點(diǎn)O作直線(xiàn)EFBD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BEDF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫(xiě)出∠EBF的度數(shù).

2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BFBE邊上,且BGBI,連接GD,HGD的中點(diǎn),連接FH,并延長(zhǎng)FHED于點(diǎn)J,連接IJ,IH,IFIG.試探究線(xiàn)段IHFH之間滿(mǎn)足的關(guān)系,并說(shuō)明理由;

3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿(mǎn)足ABAD時(shí),點(diǎn)E是對(duì)角線(xiàn)AC上一點(diǎn),連接DE,作EFDE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請(qǐng)直接寫(xiě)出線(xiàn)段AGGE,EC三者之間滿(mǎn)足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列各式及其驗(yàn)證過(guò)程:

按照上述兩個(gè)等式及其驗(yàn)證過(guò)程的基本思路,猜想的變形結(jié)果并進(jìn)行驗(yàn)證;

針對(duì)上述各式反應(yīng)的規(guī)律,寫(xiě)出用為任意自然數(shù),且表示的等式,并說(shuō)明它成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=ADCB=CD,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,下列結(jié)論中:①∠ABC=ADC;②ACBD相互平分;③ACBD分別平分四邊形ABCD的兩組對(duì)角;④四邊形ABCD的面積S=ACBD

1)寫(xiě)出正確結(jié)論的序號(hào);

2)證明所有正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)是,點(diǎn)B的坐標(biāo)是

1)圖中點(diǎn)C關(guān)于x軸對(duì)稱(chēng)的點(diǎn)D的坐標(biāo)是

2)如果將點(diǎn)B沿著與x軸平行的方向向右平移3個(gè)單位得到點(diǎn),那么、兩點(diǎn)之間的距離是

3)求四邊形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=2,∠5=6,∠3=4,試說(shuō)明AEBDADBC.請(qǐng)完成下列證明過(guò)程.

證明:

∵∠5=6,

ABCE(  )

∴∠3=__________

∵∠3=4,

∴∠4=BDC(  )

    BD(  ),

∴∠2=    (  )

∵∠1=2,

∴∠1=______,

ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CDAD=BC;③AO=CO,BO=DO;④AB∥CDAD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABBCCA∠A∠ABC∠ACB,在△ABC的頂點(diǎn)A,C處各有一只小螞蟻,它們同時(shí)出發(fā),分別以相同速度由AB和由CA爬行,經(jīng)過(guò)ts)后,它們分別爬行到了D,E處,設(shè)DCBE的交點(diǎn)為F

1△ACD≌△CBE嗎?為什么?

2)小螞蟻在爬行過(guò)程中,DCBE所成的∠BFC的大小有無(wú)變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案