【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結(jié)論中:①∠ABC=∠ADC;②AC與BD相互平分;③AC,BD分別平分四邊形ABCD的兩組對角;④四邊形ABCD的面積S=ACBD.
(1)寫出正確結(jié)論的序號;
(2)證明所有正確的結(jié)論.
【答案】(1)正確結(jié)論是①④;(2)①結(jié)論正確;②結(jié)論不正確;③結(jié)論不正確;④結(jié)論正確;證明所有正確的結(jié)論見解析.
【解析】
①證明△ABC≌△ADC,可作判斷;
②③由于AB與BC不一定相等,則可知此兩個選項不一定正確;
④根據(jù)面積和求四邊形的面積即可.
(1)正確結(jié)論是①④,
(2)①在△ABC和△ADC中,
∵,
∴△ABC≌△ADC(SSS),
∴∠ABC=∠ADC,
故①結(jié)論正確;
②∵△ABC≌△ADC,
∴∠BAC=∠DAC,
∵AB=AD,
∴OB=OD,AC⊥BD,
而AB與BC不一定相等,所以AO與OC不一定相等,
故②結(jié)論不正確;
③由②可知:AC平分四邊形ABCD的∠BAD、∠BCD,
而AB與BC不一定相等,所以BD不一定平分四邊形ABCD的對角;
故③結(jié)論不正確;
④∵AC⊥BD,
∴四邊形ABCD的面積S=S△ABD+S△BCD=BDAO+BDCO=BD(AO+CO)=ACBD.
故④結(jié)論正確;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.
(1)求反比例函數(shù)y=的表達式;
(2)求點B的坐標;
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)銷一種綠茶,每千克成本為50元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量w(千克)隨銷售單價x(元/千克)的變化而變化,具體關(guān)系式為 ,且物價部門規(guī)定這種綠茶的銷售單價不得高于90元/千克.設這種綠茶在這段時間內(nèi)的銷售利潤為y(元),解答下列問題:
(1)求y與x的關(guān)系式.
(2)當x取何值時,y的值最大?
(3)如果公司想要在這段時間內(nèi)獲得 元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,連接OC.則下列說法中正確的是( 。AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周長=AC的長度
A.①②③B.②④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且AB=AE,延長AB與DE的延長線交于點F.下列結(jié)論中:①△ABC≌△EAD;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CEF其中正確的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,⊙O的直徑AB為4,C為⊙O上一個定點,∠ABC=30°,動點P從A點出發(fā)沿半圓弧 向B點運動(點P與點C在直徑AB的異側(cè)),當P點到達B點時運動停止,在運動過程中,過點C作CP的垂線CD交PB的延長線于D點.
(1)求證:△ABC∽△PDC
(2)如圖2,當點P到達B點時,求CD的長;
(3)設CD的長為 .在點P的運動過程中, 的取值范圍為(請直接寫出案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,點P、Q在DC邊上,且PQ= DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3.
(1)該二次函數(shù)圖象的對稱軸為;
(2)判斷該函數(shù)與x軸交點的個數(shù),并說明理由;
(3)下列說法正確的是(填寫所有正確說法的序號)
①頂點坐標為(1,﹣4);
②當y>0時,﹣1<x<3;
③在同一平面直角坐標系內(nèi),該函數(shù)圖象與函數(shù)y=﹣x2+2x+3的圖象關(guān)于x軸對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com