【題目】如圖,ABCD的對角線AC,BD相交于點(diǎn)O,AC⊥AB,AB=2,且AO∶BO=2∶3.
(1)求AC的長;
(2)求ABCD的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有三點(diǎn)。
(1)連接,若
①線段的長為 (直接寫出結(jié)果)
②如圖1,點(diǎn)為軸負(fù)半軸上一點(diǎn),點(diǎn)為線段上一點(diǎn),連接作,且,當(dāng)點(diǎn)從向運(yùn)動時,點(diǎn)不變,點(diǎn)隨之運(yùn)動,連接,求線段的中點(diǎn)的運(yùn)動路徑長;
(2)如圖2,作,連接并延長,交延長線于于.若,且,在平面內(nèi)是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+8的圖象分別交x軸、y軸于A、B兩點(diǎn),過點(diǎn)A的直線交y軸正半軸于點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點(diǎn)P,使得S△ABP=S△AOB,求出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、B、M、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出所有點(diǎn)H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場有A、B兩種商品,每件的進(jìn)價分別為15元、35元.商場銷售5件A商品和2件B商品,可獲得利潤45元;銷售8件A商品和4件B商品,可獲得利潤80元.
(1)求A、B兩種商品的銷售單價;
(2)如果該商場計(jì)劃購進(jìn)A、B兩種商品共80件,用于進(jìn)貨資金最多投入2 000元,但又要確保獲利至少590元,請問有那幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的解析式為,它與坐標(biāo)軸分別交于A,B兩點(diǎn).
(1)求出點(diǎn)A的坐標(biāo);
(2)動點(diǎn)C從y軸上的點(diǎn)出發(fā),以每秒1個單位長度的速度向y軸負(fù)半軸運(yùn)動,求出點(diǎn)C運(yùn)動的時間t,使得為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,對角線、相交于點(diǎn).,,點(diǎn)為上一動點(diǎn),點(diǎn)以的速度從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動.設(shè)運(yùn)動時間為,當(dāng)________時,為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn),分別在菱形的邊,上,頂點(diǎn)、在菱形的對角線上.
(1)求證:;
(2)若為中點(diǎn),,求菱形的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,-1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:善于思考的小明在解方程組時,采用了一種“整體代換”的解法,解法如下:
解:將方程②8x+20y+2y=10,變形為 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程組的解為: 請你解決以下問題:
(1)試用小明的“整體代換”的方法解方程組
(2)已知 x、y、z,滿足試求 z 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com