【題目】如圖,直線的解析式為,它與坐標(biāo)軸分別交于A,B兩點.

1)求出點A的坐標(biāo);

2)動點Cy軸上的點出發(fā),以每秒1個單位長度的速度向y軸負(fù)半軸運動,求出點C運動的時間t,使得為等腰三角形.

【答案】1;(2)當(dāng)點C運動的時間t3秒或13秒或秒或16秒時,為等腰三角形.

【解析】

1)將y=0代入解析式中即可求出結(jié)論;

2)根據(jù)等腰三角形腰的情況分類討論,然后分別畫出圖形,利用時間=路程÷速度分別求出對應(yīng)時間即可.

解:(1)令,則,

解得

則點A的坐標(biāo)為

2)令,則,

則點B的坐標(biāo)為

①當(dāng)時,

若點C在點B上方時,如下圖所示:

(秒),

若點C在點B上方時,如下圖所示:

(秒);

②當(dāng)時,如下圖所示

設(shè),

,

中,

,

解得

(秒);

③當(dāng)時,

AOBC

OB=OC=4

(秒).

綜上所述:當(dāng)點C運動的時間t3秒或13秒或秒或16秒時,為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題)如圖①,點D是∠ABC的角平分線BP上一點,連接AD,CD,若∠A與∠C互補,則線段ADCD有什么數(shù)量關(guān)系?

(探究)

探究一:如圖②,若∠A90°,則∠C180°﹣∠A90°,即ADABCDBC,又因為BD平分∠ABC,所以ADCD,理由是:   

探究二:若∠A≠90°,請借助圖①,探究ADCD的數(shù)量關(guān)系并說明理由.

[理論]D是∠ABC的角平分線BP上一點,連接AD,CD,若∠A與∠C互補,則線段ADCD的數(shù)量關(guān)系是   

[拓展]已知:如圖③,在ABC中,ABAC,∠A100°,BD平分∠ABC

求證:BCAD+BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明每天上午9時騎自行車離開家,15時回家,他描繪了離家的距與時間的變化情況.

(1)圖象表示哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?

(2)10時和13時,他分別離家多遠(yuǎn)?

(3)他到達(dá)離家最遠(yuǎn)的地方時什么時間?離家多遠(yuǎn)?

(4)11時到12時他行駛了多少千米?

(5)他由離家最遠(yuǎn)的地方返回的平均速度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品1件和乙商品3件共需240元;購進(jìn)甲商品2件和乙商品1件共需130元.

1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC外角的平分線,已知∠BAC=∠ACD

1)求證:△ABC≌△CDA

2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線ACBD相交于點O,ACAB,AB2,且AOBO23.

(1)AC的長;

(2)ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有AB、C三地,C地位于AB兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過程中,甲、乙兩車各自與C地的距離ykm)與甲車行駛時間th)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達(dá)C地時,兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時測得葉片的頂端DD、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG10米,BGHGCHAH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8sin35°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一塊破損的木板.

(1)請你設(shè)計一種方案,檢驗?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過點 A AM⊥BC M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案