【題目】如圖,在菱形中,點(diǎn)在軸上,點(diǎn)的坐標(biāo)為分別以點(diǎn)為圓心、大于的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn).直線恰好經(jīng)過點(diǎn)則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
【答案】C
【解析】
連接DB,如圖,利用基本作圖得到EF垂直平分AB,則DA=DB,再根據(jù)菱形的性質(zhì)得到AD∥BC,AD=AB,則可判斷△ADB為等邊三角形,所以∠DAB=∠ABO=60°,然后計(jì)算出OB=2,從而得到B點(diǎn)坐標(biāo).
解:連接DB,如圖,
由作法得EF垂直平分AB,
∴DA=DB,
∵四邊形ABCD是菱形,
∴AD∥BC,AD=AB,
∴AD=AB=DB,
∴△ADB為等邊三角形,
∴∠DAB=60°,
∴∠ABO=60°,
∵A(0,),
∴OA=,
∵∠ABO=60°,∠AOB=90°,
∴∠BAO=30°,
∴在Rt△AOB中,AB=2OB,
∵OB2+OA2=AB2,
∴OB2+2=(2OB)2,
∴OB=2(舍負(fù)),
∴B(2,0).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD長(zhǎng)與寬的比為3:2,點(diǎn)E,F分別在邊AB、BC上,tan∠1=,tan∠2=,則cos(∠1+∠2)=( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桃花中學(xué)計(jì)劃購買兩種型號(hào)的小黑板,經(jīng)洽談, 購買一塊型小黑板比買一塊型小黑板多元,且購買塊型小黑板和塊型小黑板共需元.
(1)求購買一塊型小黑板和一塊型小黑板各需要多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需購買兩種型號(hào)的小黑板共塊,并且購買型小黑板的數(shù)量不少于購買型小黑板的數(shù)量,請(qǐng)問學(xué)校購買這批小黑板最少要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國(guó)北京世界園藝博覽會(huì)已于2019年4月29日在北京市延慶區(qū)開展,吸引了大批游客參觀游覽.五一小長(zhǎng)假期間平均每天入園人數(shù)大約是8萬人,佳佳等5名同學(xué)組成的學(xué)習(xí)小組,隨機(jī)調(diào)查了五一假期中入園參觀的部分游客,獲得了他們?cè)趫@內(nèi)參觀所用時(shí)間,并對(duì)數(shù)據(jù)進(jìn)行整理,描述和分析,下面給出了部分信息:
a.參觀時(shí)間的頻數(shù)分布表如下:
時(shí)間(時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
25 | 0.050 | |
85 | ||
160 | 0.320 | |
139 | 0.278 | |
0.100 | ||
41 | 0.082 | |
合計(jì) | 1.000 |
b.參觀時(shí)間的頻數(shù)分布直方圖如圖:
根據(jù)以上圖表提供的信息,解答下列問題:
(1)這里采用的調(diào)查方式是 ;
(2)表中 , , ;
(3)并請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(4)請(qǐng)你估算五一假期中平均每天參觀時(shí)間小于4小時(shí)的游客約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,以為直徑的經(jīng)過點(diǎn)過點(diǎn)作的切線點(diǎn)是上不與點(diǎn)重合的一個(gè)動(dòng)點(diǎn),連接.
求證:;
填空:
當(dāng)_ 時(shí),為等腰直角三角形:
當(dāng) 時(shí),四邊形為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)和是一次函數(shù)與反比例函數(shù)圖象的兩個(gè)不同交點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線以及分別與軸交與點(diǎn)和點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)若,求的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上有M、N兩點(diǎn),M點(diǎn)表示的數(shù)分別為m,N點(diǎn)表示的數(shù)是n(n>m),則線段MN的長(zhǎng)(點(diǎn)M到點(diǎn)N的距離)可表示為MN=n﹣m,請(qǐng)用上面材料中的知識(shí)解答下面的問題:一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)O開始,先向左移動(dòng)3cm到達(dá)A點(diǎn),再向右移動(dòng)2cm到達(dá)B點(diǎn),然后向右移動(dòng)4cm到達(dá)C點(diǎn),用1cm表示1個(gè)單位長(zhǎng)度.
(1)請(qǐng)你在數(shù)軸上表示出A、B、C三點(diǎn)的位置,并直接寫出線段AC的長(zhǎng)度.
(2)若數(shù)軸上有一點(diǎn)D,且AD=4cm,則點(diǎn)D表示的數(shù)是什么?
(3)若將點(diǎn)A向右移動(dòng)xcm,請(qǐng)用代數(shù)式表示移動(dòng)后的點(diǎn)所表示的數(shù).
(4)若點(diǎn)P以從點(diǎn)A向原點(diǎn)O移動(dòng),同時(shí)點(diǎn)Q以與點(diǎn)P相同的速度從原點(diǎn)O向點(diǎn)C移動(dòng),試探索:PQ的長(zhǎng)是否會(huì)發(fā)生改變?如果不變,請(qǐng)求出PQ的長(zhǎng).如果改變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)(a,b,c是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)x=-1時(shí)函數(shù)的最小值為-1;乙發(fā)現(xiàn)4a-2b+c=0成立;丙發(fā)現(xiàn)當(dāng)x<1時(shí),函數(shù)值y隨x的增大而增大;丁發(fā)現(xiàn)當(dāng)x=5時(shí),y=-4.已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com