【題目】如圖,在△ABC中,ABAC10cm,BDAC于點DBD8cm.點M從點A出發(fā),沿AC的方向勻速運動,速度為2cm/s;同時直線PQ由點B出發(fā),沿BA的方向勻速運動,速度為1cm/s,運動過程中始終保持PQAC,直線PQAB于點P、交BC于點Q、交BD于點F.連接PM,設(shè)運動時間為t秒(0t5).

1)當t為何值時,四邊形PQCM是平行四邊形?

2)設(shè)四邊形PQCM的面積為ycm2,求yt之間的函數(shù)關(guān)系式;

3)是否存在某一時刻t,使S四邊形PQCMSABC?若存在,求出t的值;若不存在,說明理由;

4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

【答案】1)當t時,四邊形PQCM是平行四邊形;(2yt28t+40;(3)不存在;詳見解析;(4ts時,點M在線段PC的垂直平分線上.

【解析】

1)假設(shè)PQCM為平行四邊形,根據(jù)平行四邊形的性質(zhì)得到對邊平行,進而得到AP=AM,列出關(guān)于t的方程,求出方程的解得到滿足題意t的值;

2)根據(jù)PQAC,利用相似三角形的性質(zhì)可得三角形BPQ也為等腰三角形,即BP=PQ=t,用含t的代數(shù)式就可以表示出BF,進而得到梯形的高DF= 又點M的運動速度和時間可知點M走過的路程AM=2t,所以梯形的下底CM=10-2t.最后根據(jù)梯形的面積公式即可得到yt的關(guān)系式;

3)根據(jù)三角形的面積公式,先求出三角形ABC的面積,又根據(jù)S四邊形PQCMSABC,求出四邊形PQCM的面積,從而得到了y的值,代入第二問求出的yt的解析式中求出t的值即可;

4)假設(shè)存在,則根據(jù)垂直平分線上的點到線段兩端點的距離相等即可得到MP=MC,過點MMH垂直AB,由一對公共角的相等和一對直角的相等即可得到△AHM∽△ADB,由相似得到對應(yīng)邊成比例進而用含t的代數(shù)式表示出AHHM的長,再由AP的長減AH的長表示出PH的長,從而在直角三角形PHM中根據(jù)勾股定理表示出MP的平方,再由AC的長減AM的長表示出MC的平方,根據(jù)兩者的相等列出關(guān)于t的方程進而求出t的值.

解:(1)假設(shè)四邊形PQCM是平行四邊形,則PMQC,

APABAMAC

ABAC,

APAM,即10t2t

解得:

∴當時,四邊形PQCM是平行四邊形;

2)∵PQAC

∴△PBQ∽△ABC,

∴△PBQ為等腰三角形,PQPBt

解得:

FDBDBF8,

又∵MCACAM102t

yPQ+MCFD

3)不存在;

SABC

S四邊形PQCMSABC時,y

解得:t0,或t20,都不合題意,因此不存在;

4)假設(shè)存在某一時刻t,使得M在線段PC的垂直平分線上,則MPMC,

MMHAB,交ABH,如圖所示:

∵∠A=∠A,∠AHM=∠ADB90°,

∴△AHM∽△ADB,

又∵AD

HP10t10

RtHMP中,

又∵MC210040t+4t2,

MP2MC2,

解得(舍去),

時,點M在線段PC的垂直平分線上.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2A種工藝品和3B種工藝品需花費520元.

1)求A,B兩種工藝品的單價;

2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?

3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在畫有方格圖的平面直角坐標系中,ABC的三個頂點均在格點上.

(1)將ACB繞點B順時針方向旋轉(zhuǎn),在方格圖中用直尺畫出旋轉(zhuǎn)后對應(yīng)的A1C1B,則A1點的坐標是(_________),C1點的坐標是(_________.

(2)在方格圖中用直尺畫出△ACB關(guān)于原點O的中心對稱圖形△A2C2B2,則A2點的坐標是(_________),C2點的坐標是(_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某口罩加工廠有兩組工人共人,組工人每人每小時可加工口罩只,組工人每人每小時可加工口罩只,兩組工人每小時一共可加工口罩只.

1)求兩組工人各多少人;

2)由于疫情加重兩組工人均提高了工作效率,一名組工人和一名組工人每小時共可生產(chǎn)口罩只,若兩組工人每小時至少加工只口罩,那么組工人每人每小時至少加工多少只口罩?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B(,n).連接OB,若SAOB=1.

(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

(2)直接寫出不等式組 的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工人師傅在修茸一人字架屋頂BAC時需要加固,計劃焊接三根鋼條AD,DE,FG.在如圖所示的ABC中,AB=AC=10,BC=12ADBC于點D,點E,F,G分別是ABBD,AC上的點,連接DE,GF,交于點H,GFAD交于點M,當HFM的中點,BFCF=15,AGAE=57時,AGM的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,點A的坐標為(0,1),點Bx軸正半軸上的一動點,以AB為邊作等腰直角ABC,使∠BAC=90°,如果點B的橫坐標為x,點C的縱坐標為y,那么表示yx的函數(shù)關(guān)系的圖像大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)發(fā)現(xiàn):如圖①,點A為一動點,點B和點C為兩個定點,且,).

填空:當點位于_______時,線段的長取得最小值,且最小值為_______(用含的式子表示);

2)如圖②應(yīng)用:點為線段外一動點,且,,如圖2分別以為邊作等邊三角形和等邊三角形,連接

①請找出圖中與相等的線段,并說明理由;

②直接寫出線段長的最小值.

3)拓展:如圖3,在平面直角坐標系中,點的坐標為,點為線段OB外一動點,且,,請求出的最小值并直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1中是小區(qū)常見的漫步機,當人踩在踏板上,握住扶手,像走路一樣抬腿,就會帶動踏板連桿繞軸旋轉(zhuǎn),從側(cè)面看圖2,立柱DE1.7m,AD0.3m,踏板靜止時從側(cè)面看與AE上點B重合,BE0.2m,當踏板旋轉(zhuǎn)到C處時,測得∠CAB=42°,求此時點C距離地面EF的高度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)

查看答案和解析>>

同步練習冊答案