【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B(,n).連接OB,若SAOB=1.

(1)求反比例函數(shù)與一次函數(shù)的關系式;

(2)直接寫出不等式組 的解集.

【答案】(1) y=y=x+; (2) 0<x<

【解析】1)由SAOB=1OA=1,即可求得AB的坐標,則可利用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的關系式

2)根據(jù)圖象可得在第一象限且反比例函數(shù)的函數(shù)值大于一次函數(shù)的函數(shù)值部分.

1)由題意得OA=1

SAOB=1,×1×n=1,解得n=2B點坐標為(,2),代入y=m=1,∴反比例函數(shù)關系式為y=;

∵一次函數(shù)的圖象過點A、B,A、B點坐標代入y=kx+b

,解得∴一次函數(shù)的關系式為y=x+;

2)由圖象可知,不等式組的解集為0x

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:用2A型車和1B型車載滿貨物一次可運貨10噸;用1A型車和2B型車載滿貨物一次可運貨11噸,某物流公司現(xiàn)有26噸貨物,計劃A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.

根據(jù)以上信息,解答下列問題:

11A型車和1輛車B型車都載滿貨物一次可分別運貨多少噸?

2)請你幫該物流公司設計租車方案;

3)若A型車每輛需租金100/次,B型車每輛需租金120/次.請選出最省錢車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),經(jīng)過7min同時到達C點,乙機器人始終以60m/min的速度行走,如圖是甲、乙兩機器人之間的距離ym)與他們的行走時間xmin)之間的圖象,請結(jié)合圖象,回答下列問題:

1A、B兩點之間的距離是   m,甲機器人前2min的速度為   m/min

2)若前3min甲機器人的速度不變,求出前3min,甲、乙兩機器人之間的距離ym)與他們的行走時間rmin)之間的關系式.

3)求出兩機器人出發(fā)多長時間相距28m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在復習課上,wsy老師要求寫出幾個與實數(shù)有關的結(jié)論:小明同學寫了以下5個:

①任何無理數(shù)都是無限不循環(huán)小數(shù);

②有理數(shù)與數(shù)軸上的點一一對應;

③在13之間的無理數(shù)有且只有5個;

是分數(shù),它是有理數(shù);

⑤由四舍五入得到的近似數(shù)7.30表示大于或等于7.295,而小于7.305的數(shù).其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線Lyx2x-6x軸相交于A、B兩點(點A在點B的左側(cè)),并與y軸相交于點C

(1)A、B、C三點的坐標,并求出ABC的面積;

(2)將拋物線向左或向右平移,得到拋物線L,且Lx軸相交于A、B兩點(點A在點B的左側(cè)),并與y軸交于點C,要使ABCABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADCDBCCD,ECD的中點,連接AEBE,BEAE,延長AEBC的延長線于點F。

證明:(1)FC=AD;

2AB=BC+AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解本校七年級學生課后延時服務課外閱讀情況,隨機抽取該校七年級部分學生進行問卷調(diào)查(每人只選一種書籍),如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

1)這次活動一共調(diào)查了________名學生;

2)在扇形統(tǒng)計圖中,小說所在扇形的圓心角等于________;

3)補全條形統(tǒng)計圖.

4)若該校七年級學生720人,試求出該年級閱讀漫畫的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB8AC6,BC5,∠ABC與∠ACB的平分線相交于點O,過O點作DEBC,則ADE的周長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)在平面直角坐標系中,拋物線y=x+5x+4的頂點為M,與x軸交于A、B兩點與y軸交于C點。

(1)求點A、B、C的坐標;

(2)求拋物線y=x+5x+4關于坐標原點O對稱的拋物線的函數(shù)表達式;

(3)設(2)中所求拋物線的頂點為,與x軸交于、兩點,與y軸交點,在以A、B、C、M、、、這八個點中的四個點為頂點的平行四邊形中,求其中一個不是菱形的平行四邊形的面積。

查看答案和解析>>

同步練習冊答案