解答題

如圖,直線分別交軸、軸于點A、C,已知P是該直線在第一象限內(nèi)的一點,PB⊥軸于點B,

(1)

求△AOC的面積

(2)

求點P的坐標(biāo)

(3)

設(shè)點R與點P在同一反比例函數(shù)的圖象上,且點R在直線PB的右側(cè),作RT⊥軸于點T,是否存在點R使得△BRT與△AOC相似,若存在,求點R的坐標(biāo);若不存在,說明理由.

答案:
解析:

(1)

A(-4,0),C(0,2),△AOC的面積為4

(2)

P(2,3)

(3)

  由P(2,3)得反比例函數(shù)為

  當(dāng)△RBT∽△ACO時,

  ,設(shè)BT=m,則RT=2m,

  R(2 + m,2m),代入得,m1=-3(舍),m2 =1,R(3,2)

  當(dāng)△RBT∽△CAO時,

  同理得:BT=2RT,設(shè)RT=n,BT=2n,

  得:R(2 + 2n,n),代入得:

  (舍去負(fù)值),


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,直線分別交x軸、y軸于點A(-4,0),C,點P(2,m)是直線AC與雙精英家教網(wǎng)曲線y=
kx
在第一象限內(nèi)的交點,PB⊥x軸,垂足為點B,△APB的面積為6.
(1)求m值;
(2)求兩個函數(shù)的解析式;
(3)在第一象限內(nèi)x為何值時一次函數(shù)大于反比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l分別交x軸、y軸于A、B兩點,且A(3
3
,0)
,∠OAB=30°,動點P、Q同時從點O出發(fā),同時到達(dá)A點,運動停止,點Q沿線段OA運動,速度為每秒
3
個單位長度,點P沿路線O→B→A運動.
(1)求直線l的解析式;
(2)設(shè)點Q的運動時間為t(秒),△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式.
(3)在(2)中,若t>1時有S=
3
3
2
,求出此時P點的坐標(biāo),并直接寫出以點O、P、Q為頂點的平行四邊形的第四個頂點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=x-1分別交x軸、反比例函數(shù)y=
kx
的圖象于點A、B,若OB2-AB2=5,則k的值是
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年上海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•上海)如圖,直線y=x+2分別交x、y軸于點A、C,P是該直線上在第一象限內(nèi)的一點,PB⊥x軸,B為垂足,S△ABP=9.
(1)求點P的坐標(biāo);
(2)設(shè)點R與點P在同一個反比例函數(shù)的圖象上,且點R在直線PB的右側(cè),作RT⊥x軸,T為垂足,當(dāng)△BRT與△AOC相似時,求點R的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案