精英家教網 > 初中數學 > 題目詳情

【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:

(1)該班總人數是 ;

(2)根據計算,請你補全兩個統(tǒng)計圖;

(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現的結論.

【答案】(1)40;(2)答案見解析;(3)答案不唯一,如優(yōu)秀人數逐漸增多,增大的幅度逐漸減小等.

【解析】

試題分析:(1)由兩個統(tǒng)計圖可以發(fā)現第一次22名優(yōu)秀的同學占55%,故該班總人數為;(2)第四次優(yōu)秀人數為:,第三次優(yōu)秀率為,據此可以補全統(tǒng)計圖;(3)根據圖像可以寫出優(yōu)秀人數逐漸增多,增大的幅度逐漸減小等信息.

試題解析:(1) 40;

(2)

(3)答案不唯一,如優(yōu)秀人數逐漸增多,增大的幅度逐漸減小等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,當直線BC、DC被直線AB所截時,∠1的同位角是_______,同旁內角是_______;當直線AB、AC被直線BC所截時,∠1的同位角是________;當直線AB、BC被直線CD所截時,∠2的內錯角是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將四邊形ABCD稱為“基本圖形”,且各點的坐標分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫出“基本圖形”關于原點O對稱的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標;
②畫出“基本圖形”繞B點順時針旋轉90°所成的四邊形A2B2C2D2
A1)B1 ,
C1 , )D1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為迎接全國文明城市的評選,市政府決定對春風路進行市政化改造,經過市場招標,決定聘請甲、乙兩個工程隊合作施工,已知春風路全長24千米,甲工程隊每天施工的長度比乙工程隊每天施工長度的多施工0.4千米,由甲工程隊單獨施工完成任務所需要的天數是乙工程隊單獨完成任務所需天數的

(1)求甲、乙兩個工程隊每天各施工多少千米?

(2)若甲工程隊每天的施工費用為0.8萬元,乙工程隊每天的施工費用為0.5萬元,要使兩個工程隊施工的總費用不超過7萬元,則甲工程隊至多施工多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知矩形ABCD的長AB為5,寬BC為4,E是BC邊上的一個動點,AE⊥EF,EF交CD于點F.設BE=x,FC=y,則點E從點B運動到點C時,能表示y關于x的函數關系的大致圖像是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E是AB上一點,點F是AD延長線上一點,且DF=BE,連接CE、CF.

(1)求證:CE=CF.

(2)在圖1中,若點G在AD上,且GCE=45°,則GE=BE+GD成立嗎?為什么?

(3)根據你所學的知識,運用(1)、(2)解答中積累的經驗,完成下列各題,如圖2,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.

若AE=6,DE=10,求AB的長;

若AB=BC=9,BE=3,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數比女生人數的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經測試,該班男、女生每天能加工的零件數分別為50個和45個,為保證他們每天加工的零件總數不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果點P由B點出發(fā)沿BC方向向點C勻速運動,同時點Q由A點出發(fā)沿AB方向向點B勻速運動,它們的速度均為1cm/s,當P點到達C點時,兩點同時停止運動,連接PQ,設運動時間為t s,解答下列問題:

(1)當t為何值時,P,Q兩點同時停止運動?
(2)設△PQB的面積為S,當t為何值時,S取得最大值,并求出最大值;
(3)當△PQB為等腰三角形時,求t的值.

查看答案和解析>>

同步練習冊答案