【題目】如圖,當直線BC、DC被直線AB所截時,∠1的同位角是_______,同旁內(nèi)角是_______;當直線AB、AC被直線BC所截時,∠1的同位角是________;當直線AB、BC被直線CD所截時,∠2的內(nèi)錯角是________

【答案】∠2; ∠5; ∠3; ∠4.

【解析】

根據(jù)同位角、內(nèi)錯角、同旁內(nèi)角的概念.在截線的同旁找同位角和同旁內(nèi)角,在截線的兩旁找內(nèi)錯角.要結合圖形,熟記同位角、內(nèi)錯角、同旁內(nèi)角的位置特點,比較它們的區(qū)別與聯(lián)系.

如圖,當直線BC、DC被直線AB所截時,∠1的同位角是∠2,同旁內(nèi)角是∠5;當直線AB、AC被直線BC所截時,∠1的同位角是∠3;當直線AB、BC被直線CD所截時,∠2的內(nèi)錯角是∠4.

故答案為:∠2,5,3,4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為(),BK的長是 , CK的長是
②求點F的坐標;
③請直接寫出拋物線的函數(shù)表達式;
(2)將矩形OCDE沿著經(jīng)過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臺球是一項高雅的體育運動,其中包含了許多物理、幾何學知識,圖-是一個臺球桌,目標球F與本球之間有一個G球阻擋.

(1)擊球者想通過擊打E球,讓E球先撞球臺的AB邊,經(jīng)過一次反彈后再撞擊F球,他應將E球打到AB邊上的哪一點?請在圖10-①中用尺規(guī)作出這一點H,并作出E球的運行路線;(不寫畫法,保留作圖痕跡)

(2)如圖-,現(xiàn)以D為原點,建立直角坐標系,記A(0,4),C(8,0),E(4,3),F(xiàn)(7,1),求E球按剛才方式運行到球的路線長度(忽略球的大小)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形紙片ABC的面積為48,BC的長為8.按下列步驟將三角形紙片ABC進行裁剪和拼圖:

第一步:如圖1,沿三角形ABC的中位線DE將紙片剪成兩部分.在線段DE上任意取一點F,在線段BC上任意取一點H,沿FH將四邊形紙片DBCE剪成兩部分;

第二步:如圖2,將FH左側紙片繞點D旋轉180°,使線段DB與DA重合;將FH右側紙片繞點E旋轉180°,使線段EC與EA重合,再與三角形紙片ADE拼成一個與三角形紙片ABC面積相等的四邊形紙片.

圖1 圖2

(1)當點F,H在如圖2所示的位置時,請按照第二步的要求,在圖2中補全拼接成的四邊形;

(2)在按以上步驟拼成的所有四邊形紙片中,其周長的最小值為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列說法錯誤的是( ).

①∠1∠3是同位角;②∠1∠5是同位角;③∠1∠2是同旁內(nèi)角;④∠1∠4是內(nèi)錯角.

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O , AC是⊙O的直徑,D是弧AB的中點.過點DCB的垂線,分別交CBCA延長線于點F、E

(1)判斷直線EF與⊙O的位置關系,并說明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過A(0,2),B(4,0)兩點.

(1)求直線AB對應的函數(shù)解析式;

(2)將該直線向上平移6個單位,求平移后的直線與x軸交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的圖案是由六個全等的直角三角形組成,點O是該圖案的中心,則該圖案可看成由一個直角三角形繞O點順時針依次旋轉________得到,或可看成由兩個相鄰的直角三角形繞O點順時針依次旋轉________得到,或可看成由三個相鄰的直角三角形繞O點旋轉________得到.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:

(1)該班總人數(shù)是 ;

(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;

(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結論.

查看答案和解析>>

同步練習冊答案