【題目】如圖,已知一次函數(shù)y1=﹣x+m與二次函數(shù)y2=ax2+bx﹣3的圖象交于A(﹣1,0)、B(2,﹣3)兩點.
(1)求m的值和二次函數(shù)的表達(dá)式.
(2)當(dāng)y1>y2時,直接寫出自變量x的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣2(k≠0)與y軸交于點A,與雙曲線y=在第一象限內(nèi)交于點B(3,b),在第三象限內(nèi)交于點C.
(1)求雙曲線的解析式;
(2)直接寫出不等式x﹣2>的解集;
(3)若OD∥AB,在第一象限交雙曲線于點D,連接AD,求S△AOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)點P的坐標(biāo)為(x,y),當(dāng)x<0時,點P的變換點P′的坐標(biāo)為(y,﹣x);當(dāng)x≥0時,點P的變換點P'的坐標(biāo)為(﹣x,y).
(1)點A(1,2)的變換點A'的坐標(biāo)是 ;
(2)點B(﹣2,3)的變換點B′在反比例函數(shù)y=的圖象上,則k= ,∠BOB'的大小是 °;
(3)點P在拋物線y=﹣(x﹣2n)2+3上,點P的變換P′的坐標(biāo)是(﹣4,﹣n),求n的值.
(4)點P在拋物線y=﹣x2﹣4x+1的圖象上,以線段PP′為對角線作正方形PMP'N,設(shè)點P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對角線垂直于x軸時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍(lán)色乒乓球共100個.從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.3.
(1)試求出紙箱中藍(lán)色球的個數(shù);
(2)小明向紙箱中再放進(jìn)紅色球若干個,小麗為了估計放入的紅球的個數(shù),她將箱子里面的球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回箱子中,多次重復(fù)上述過程后,她發(fā)現(xiàn)摸到紅球的頻率在0.5附近波動,請據(jù)此估計小明放入的紅球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=且∠ACB最大時,b的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線和直線l:y=kx+b,點A(-3,-3),B(1,-1)均在直線l上.
(1)若拋物線C與直線l有交點,求a的取值范圍;
(2)當(dāng)a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時,函數(shù)y的最大值為-4,求m的值;
(3)若拋物線C與線段AB有兩個不同的交點,請直接寫出a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com