【題目】為了落實國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)關(guān)系式;

(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?

【答案】(1);(2)該產(chǎn)品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤200元.

【解析】

試題(1)根據(jù)銷售額=銷售量×銷售價單x,列出函數(shù)關(guān)系式;(2)用配方法將(2)的函數(shù)關(guān)系式變形,利用二次函數(shù)的性質(zhì)求最大值.

試題解析:(1)由題意得:,

w與x的函數(shù)關(guān)系式為:.

(2)

﹣2<0,當x=30時,w有最大值.w最大值為200.

答:該產(chǎn)品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤200元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形的頂點與坐標原點重合,頂點分別在坐標軸的正半軸上, ,在直線,直線與折線有公共點.

1)點的坐標是 ;

2)若直線經(jīng)過點,求直線的解析式;

3)對于一次函數(shù),當的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ADBC,∠C=90°CD=6cm.動點Q從點B出發(fā),以1cm/S的速度沿BC運動到點C停止,同時,動點P也從B點出發(fā),沿折線B→A→D運動到點D停止,且PQBC.設(shè)運動時間為ts),點P運動的路程為ycm),在直角坐標系中畫出y關(guān)于t的函數(shù)圖象為折線段OEEF(如圖②).已知點M(4,5)在線段OE上,則圖①中AB的長是________cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售某種型號防護面罩,進貨價為40/個.經(jīng)市場銷售發(fā)現(xiàn):售價為50/個時,每周可以售出100個,若每漲價1元,就會少售出5個.供貨廠家規(guī)定市場售價不得低于50/個,且商場每周銷售數(shù)量不得少于80個.

1)確定商場每周銷售這種型號防護面罩所得的利潤w(元)與售價x(元/個)之間的函數(shù)關(guān)系式.

2)當售價x(元/個)定為多少時,商場每周銷售這種防護面罩所得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是(  )

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣1,0),(3,0

C. x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的半徑為、的兩條弦,,,則之間的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初中部舉行詩詞大會預(yù)選賽,學校對參賽同學獲獎情況進行統(tǒng)計,繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:

1)參加此次詩詞大會預(yù)選賽的同學共有 人;

2)在扇形統(tǒng)計圖中,“三等獎”所對應(yīng)的扇形的圓心角的度數(shù)為 ;

3)將條形統(tǒng)計圖補充完整;

4)若獲得一等獎的同學中有來自七年級,來自九年級,其余的來自八年級,學校決定從獲得一等獎的同學中任選兩名同學參加全市詩詞大會比賽,請通過列表或樹狀圖方法求所選兩名同學中,恰好是一名七年級和一名九年級同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將放在每個小正方形的邊長為的網(wǎng)格中,點均在格點上,

的長等于____________;

以點為旋轉(zhuǎn)中心,把順時針旋轉(zhuǎn),得到,使點的對應(yīng)點恰好落在邊上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,作出旋轉(zhuǎn)后的圖形,并簡要說明作圖的方法(不要求證明)________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店準備購進兩種商品,種商品毎件的進價比種商品每件的進價多20元,用3000元購進種商品和用1800元購進種商品的數(shù)量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.

1種商品每件的進價和種商品每件的進價各是多少元?

2)商店計劃用不超過1560元的資金購進兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進貨方案?

3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠)元,種商品售價不變,在(2)條件下,請設(shè)計出銷售這40件商品獲得總利潤最大的進貨方案.

查看答案和解析>>

同步練習冊答案