【題目】若拋物線y=x2﹣3x+c與y軸的交點(diǎn)為(0,2),則下列說(shuō)法正確的是( 。
A. 拋物線開(kāi)口向下
B. 拋物線與x軸的交點(diǎn)為(﹣1,0),(3,0)
C. 當(dāng)x=1時(shí),y有最大值為0
D. 拋物線的對(duì)稱軸是直線x=
【答案】D
【解析】
A、由a=1>0,可得出拋物線開(kāi)口向上,A選項(xiàng)錯(cuò)誤;
B、由拋物線與y軸的交點(diǎn)坐標(biāo)可得出c值,進(jìn)而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點(diǎn)為(1,0)、(2,0),B選項(xiàng)錯(cuò)誤;
C、由拋物線開(kāi)口向上,可得出y無(wú)最大值,C選項(xiàng)錯(cuò)誤;
D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對(duì)稱軸為直線x=-,D選項(xiàng)正確.
綜上即可得出結(jié)論.
解:A、∵a=1>0,
∴拋物線開(kāi)口向上,A選項(xiàng)錯(cuò)誤;
B、∵拋物線y=x2-3x+c與y軸的交點(diǎn)為(0,2),
∴c=2,
∴拋物線的解析式為y=x2-3x+2.
當(dāng)y=0時(shí),有x2-3x+2=0,
解得:x1=1,x2=2,
∴拋物線與x軸的交點(diǎn)為(1,0)、(2,0),B選項(xiàng)錯(cuò)誤;
C、∵拋物線開(kāi)口向上,
∴y無(wú)最大值,C選項(xiàng)錯(cuò)誤;
D、∵拋物線的解析式為y=x2-3x+2,
∴拋物線的對(duì)稱軸為直線x=-=-=,D選項(xiàng)正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)上學(xué)期全部參加了捐款活動(dòng),捐款情況如下統(tǒng)計(jì)表:
金額(元) | 5 | 10 | 15 | 20 | 25 | 30 |
人數(shù)(人) | 8 | 12 | 10 | 6 | 2 | 2 |
(1)求該班學(xué)生捐款額的平均數(shù)和中位數(shù);
(2)試問(wèn)捐款額多于15元的學(xué)生數(shù)是全班人數(shù)的百分之幾?
(3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學(xué)生、孤老病者三種被資助的對(duì)象,問(wèn)該班捐給重病學(xué)生是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過(guò)Q作⊙O的切線交射線OA于點(diǎn)E.
(1)如圖①,點(diǎn)P在線段OA上,若∠OBQ=15°,求∠AQE的大;
(2)如圖②,點(diǎn)P在OA的延長(zhǎng)線上,若∠OBQ=65°,求∠AQE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為了測(cè)量河對(duì)岸l1的兩棵古樹(shù)A、B之間的距離,他們?cè)诤舆@邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹(shù)A、B之間的距離為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過(guò)點(diǎn)A(3,0),C(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)如圖,點(diǎn)P是二次函數(shù)圖象的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),二次函數(shù)的圖象與y軸交于點(diǎn)B,當(dāng)PB+PC最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在第一象限內(nèi)的拋物線上有一點(diǎn)Q,當(dāng)△QAB的面積最大時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫(huà)樹(shù)狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,點(diǎn)P在線段AB上以3 cm/s的速度,由A向B運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段BD上由B向D運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)運(yùn)動(dòng)時(shí)間t=1(s),△ACP與△BPQ是否全等?說(shuō)明理由,并直接判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)將 “AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA”,其他條件不變.若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能使△ACP與△BPQ全等.
(3)在圖2的基礎(chǔ)上延長(zhǎng)AC,BD交于點(diǎn)E,使C,D分別是AE,BD中點(diǎn),若點(diǎn)Q以(2)中的運(yùn)動(dòng)速度從點(diǎn)B出發(fā),點(diǎn)P以原來(lái)速度從點(diǎn)A同時(shí)出發(fā),都逆時(shí)針沿△ABE三邊運(yùn)動(dòng),求出經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有( )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com