【題目】的半徑為,、的兩條弦,,,則之間的距離為______

【答案】7cm17cm

【解析】

OEABE,交CDF,連結(jié)OA、OC,如圖,根據(jù)平行線的性質(zhì)得OFCD,再利用垂徑定理得到AE12,CF5,然后根據(jù)勾股定理,在RtOAE中計(jì)算出OE5,在RtOCF中計(jì)算出OF12,再分類討論:當(dāng)圓心OABCD之間時(shí),EFOFOE;當(dāng)圓心O不在ABCD之間時(shí),EFOFOE

解:作OEABE,交CDF,連結(jié)OA、OC,如圖,

ABCD,

OFCD,

AEBEAB12CFDFCD5

RtOAE中,∵OA13AE12,

OE,

RtOCF中,∵OC13,CF5,

OF,

當(dāng)圓心OABCD之間時(shí),EFOFOE12517

當(dāng)圓心O不在ABCD之間時(shí),EFOFOE1257;

ABCD之間的距離為7cm17cm

故答案為:7cm17cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB6,將RtABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使斜邊ABB點(diǎn),則線段CA掃過的面積為_____.(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB是非直徑弦,弦CDAB,

1)當(dāng)CD經(jīng)過圓心時(shí)(如圖①),∠AOC+DOB=__________

2)當(dāng)CD不經(jīng)過圓心時(shí)(如圖②),∠AOC+DOB的度數(shù)與(1)的情況相同嗎?試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮進(jìn)行摸牌游戲,如圖,他們有四張除牌面數(shù)字不同外、其他地方完全相同的紙牌,牌面數(shù)字分別為4,56,7,他們把紙牌背面朝上,充分洗勻后,從這四張紙牌中摸出一張,記下數(shù)字放回后,再次重新洗勻,然后再摸出一張,再次記下數(shù)字,將兩次數(shù)字之和做為對(duì)比結(jié)果.若兩次數(shù)字之和大于11,則小明勝;若兩次數(shù)字之和小于11,則小亮勝.

1)請(qǐng)你用列表法或樹狀圖列出這個(gè)摸牌游戲中所有可能出現(xiàn)的結(jié)果.

2)這個(gè)游戲公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)國務(wù)院的指示精神,地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)關(guān)系式;

(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.

(1)若直線經(jīng)過兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RABC中,∠ACB90°,AC6BC8,EAC上一點(diǎn),且AE,AD平分∠BACBCD.若PAD上的動(dòng)點(diǎn),則PC+PE的最小值等于(  )

A.B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)八年級(jí)有3000名學(xué)生參加“愛我中華”知識(shí)競(jìng)賽活動(dòng),為了了解本次知識(shí)競(jìng)賽的成績(jī)分布情況,從中抽取了部分學(xué)生的得分進(jìn)行統(tǒng)計(jì).

成績(jī)x(分)

頻數(shù)

頻率

50≤x60

10

a

60≤x70

16

0.08

70≤x80

b

0.20

請(qǐng)你根據(jù)以上的信息,回答下列問題:

(1) a= ,b=

(2) 在扇形統(tǒng)計(jì)圖中,“成績(jī)x滿足50≤x60”對(duì)應(yīng)扇形的圓心角大小是 ;

(3) 若將得分轉(zhuǎn)化為等級(jí),規(guī)定:50≤x60評(píng)為D,60≤x70評(píng)為C,70≤x90評(píng)為B,90≤x100評(píng)為A.這次全區(qū)八年級(jí)參加競(jìng)賽的學(xué)生約有 學(xué)生參賽成績(jī)被評(píng)為“B”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題:如何使用尺規(guī)完成“過直線l外一點(diǎn)P作已知直線l的平行線”.

小明的作法如下:

①在直線l上取一點(diǎn)A,以點(diǎn)A為圓心,AP長為半徑作弧,交直線l于點(diǎn)B;

②分別以P,B為圓心,以AP長為半徑作弧,兩弧相交于點(diǎn)Q(與點(diǎn)A不重合);

③作直線PQ.所以直線PQ就是所求作的直線.根據(jù)小明的作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵ABAP      

∴四邊形ABQP是菱形(   )(填推理的依據(jù)).

PQl

查看答案和解析>>

同步練習(xí)冊(cè)答案