【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線:的頂點(diǎn)為,與軸相交于點(diǎn),先將拋物線沿軸翻折,再向右平移p個單位長度后得到拋物,直線;經(jīng)過,兩點(diǎn).
(1)求點(diǎn)的坐標(biāo),并結(jié)合圖象直接寫出不等式:的解集;
(2)若拋物線的頂點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,求p的值及拋物線的解析式;
(3)若拋物線與軸的交點(diǎn)為、(點(diǎn)、分別與拋物線上點(diǎn)、對應(yīng)),試問四邊形是何種特殊四邊形?并說明其理由.
【答案】(1),;(2)4,;(3)平行四邊形,見解析
【解析】
(1)利用配方法將拋物線C1的解析式配方,即可得出頂點(diǎn)M的坐標(biāo),結(jié)合函數(shù)圖象的上下位置關(guān)系,即可得出不等式的解集;
(2)找出點(diǎn)M關(guān)于x軸對稱的對稱點(diǎn)的坐標(biāo),找出點(diǎn)M關(guān)于原點(diǎn)對稱的對稱點(diǎn)的坐標(biāo),二者橫坐標(biāo)做差即可得出p的值,根據(jù)拋物線的開口大小沒變,開口方向改變,再結(jié)合平移后的拋物線的頂點(diǎn)坐標(biāo)即可得出拋物線C2的解析式;
(3)由點(diǎn)的對稱性知,DM、EB相互平分,故四邊形EMBD是平行四邊形.
解:(1)
觀察函數(shù)圖象,發(fā)現(xiàn):當(dāng)﹣2<x<0時,拋物線C1在直線l的下方,
∴不等式的解集是;
(2)關(guān)于對稱的點(diǎn)為
點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱
拋物線與的形狀相同,開口相反
值互為相反數(shù)
拋物線的頂點(diǎn)
;
(3)令y=x2+6x+2=0,則x=﹣2,
即點(diǎn)E、F的坐標(biāo)分別為(﹣2﹣,0)、(﹣2+,0),
點(diǎn)M(﹣2,﹣4);
同理點(diǎn)A、B、D的坐標(biāo)分別為(2﹣,0)、(2+,0)、(2,4),
由點(diǎn)的對稱性知,DM、EB相互平分,故四邊形EMBD是平行四邊形,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是銳角三角形.
(1)請?jiān)趫D1中用無刻度的直尺和圓規(guī)作圖;作直線,使上的各點(diǎn)到、兩點(diǎn)的距離相等;設(shè)直線與、分別交于點(diǎn)、,作一個圓,使得圓心在線段上,且與邊、相切;(不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若,,則的半徑為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份“你最喜歡的支付方式”調(diào)查問卷(每人必選且只選一種),在某商場隨機(jī)調(diào)查了部分顧客,并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人,在扇形統(tǒng)計(jì)圖中,表示“現(xiàn)金”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是 ;
(3)運(yùn)用這次的調(diào)查結(jié)果估計(jì)1000名顧客中用“支付寶”支付的有多少人?
(4)在一次購物中,嘉嘉和琪琪都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進(jìn)價比每臺空調(diào)的進(jìn)價多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.
求每臺電冰箱與空調(diào)的進(jìn)價分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在直線x=3上,直線x=3與x軸交于點(diǎn)C
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒個單位長度的速度沿線段AB向點(diǎn)B運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個單位長度的速度沿線段CA向點(diǎn)A運(yùn)動,點(diǎn)P,Q同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點(diǎn)N在直線x=3上.
①當(dāng)t為何值時,矩形PQNM的面積最小?并求出最小面積;
②直接寫出當(dāng)t為何值時,恰好有矩形PQNM的頂點(diǎn)落在拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實(shí)踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中--項(xiàng)),并據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中提供的信息,解答下列問題:
(1) ,直接補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生名,試估計(jì)該校喜愛看課外書的學(xué)生人數(shù);
(3)若被調(diào)查喜愛體育活動的名學(xué)生中有名男生和名女生,現(xiàn)從這名學(xué)生中任意抽取名,請用列表或畫樹狀圖的方法求恰好抽到名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】火鍋是重慶的一張名片,深受廣大市民的喜愛.重慶某火鍋店采取堂食、外賣、店外擺攤(簡稱擺攤)三種方式經(jīng)營,6月份該火鍋店堂食、外賣、擺攤?cè)N方式的營業(yè)額之比為3:5:2.隨著促進(jìn)消費(fèi)政策的出臺,該火鍋店老板預(yù)計(jì)7月份總營業(yè)額會增加,其中擺攤增加的營業(yè)額占總增加的營業(yè)額的,則擺攤的營業(yè)額將達(dá)到7月份總營業(yè)額的,為使堂食、外賣7月份的營業(yè)額之比為8:5,則7月份外賣還需增加的營業(yè)額與7月份總營業(yè)額之比是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+(4a﹣1)x﹣4與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OC=2OB,點(diǎn)D為線段OB上一動點(diǎn)(不與點(diǎn)B重合),過點(diǎn)D作矩形DEFH,點(diǎn)H、F在拋物線上,點(diǎn)E在x軸上.
(1)求拋物線的解析式;
(2)當(dāng)矩形DEFH的周長最大時,求矩形DEFH的面積;
(3)在(2)的條件下,矩形DEFH不動,將拋物線沿著x軸向左平移m個單位,拋物線與矩形DEFH的邊交于點(diǎn)M、N,連接M、N.若MN恰好平分矩形DEFH的面積,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com