【題目】已知,如圖①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿CB方向勻速移動,速度為1cm/s,當△PNM停止平移時,點Q也停止移動,如圖②,設移動時間為t(s)(0<t<4),連接PQ,MQ,MC,解答下列問題:

(1)當t為何值時,PQ∥MN?

(2)設△QMC的面積為y(cm2),求y與t之間的函數(shù)關系式;

(3)是否存在某一時刻t,使S△QMC:S四邊形ABQP=1:4?若存在,求出t的值;若不存在,請說明理由.

(4)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.

【答案】t=;y=;1:4;t=

【解析】試題分析: PQMN時,可得: ,從而得到: ,解方程求出的值;

于點,則可以得到,根據相似三角形的性質可以求出, ,利用三角形的面積公式求出的關系式;

根據SQMC: 可以得到關于的方程,解方程求出的值;

于點, 于點,則CPD∽△CBA,利用相似三角形的性質可以得到: ,解方程求出的值.

試題解析:(1)如圖所示,

PQMN,則有,

, ,

,

,

解得.

(2)如圖所示,

于點,則CPD∽△CBA

,

, , ,

,

,

∴△QMC的面積為:

(3)存在時,使得SQMC: .

理由如下:

∵PM∥BC

SQMC:

∴SPQC: SABC=1:5,

.

存在當時,SQMC: ;

(4)存在某一時刻,使.

理由如下:

如圖所示,

于點, 于點,則CPD∽△CBA

,

, , ,

,

.

∵PQ⊥MQ,

∴△PDQ∽△QEM

,

,

,

,

, (舍去)

時,使PQMQ.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,A(a,0)C(b,2),且滿足(a2)20,過CCBx軸于B.

(1)求三角形ABC的面積;

(2)如圖②,若過BBDACy軸于D,且AEDE分別平分∠CAB,ODB,求∠AED的度數(shù);

(3)y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程組:

1 2

3 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點O,交AC于點D,連接BD.下列結論錯誤的是(  )

A. ∠C=2∠A B. BD平分∠ABC C. S△BCD=S△BOD D. 點D為線段AC的黃金分割點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上以每秒1個單位的速度由C向B運動。

(1) 求梯形ODPC的面積S與時間t的函數(shù)關系式。

(2) t為何值時,四邊形PODB是平行四邊形?

(3) 在線段PB上是否存在一點Q,使得ODQP為菱形。若存在求t值,若不存在,說明理由。

(4) 當OPD為等腰三角形時,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據電力部門統(tǒng)計,每天8002100是用電高峰期,簡稱峰時”.2100至次日800是用電低谷期,簡稱谷時為了緩解供電需求的矛盾,某市電力部門擬逐步統(tǒng)一換裝峰谷分時電表,對用電實行峰谷分時電價新政策,具體見下表:

小明家對換表后最初使用的95千瓦·時電進行測算,發(fā)現(xiàn)比在換表前使用95千瓦·時電節(jié)約了5.9元,小明家使用峰時電和谷時電分別是多少千瓦·?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有規(guī)律排列的一列數(shù):2,4,6,8,10,12,…,它的每一項可用式子2n(n是正整數(shù))來表示那么有規(guī)律排列的一列數(shù):-1,2,-4,7,-11,16,-22,29,….

(1)它的第10個數(shù)是多少?

(2)你認為它的第n項可用怎樣的式子來表示?

(3)2018是不是這列數(shù)中的數(shù)?如果是,是第幾個數(shù)?如果不是請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習了展開與折疊后,同學們了解了一些簡單幾何體的展開圖,小明在家用剪刀剪一個如圖(1)的長方體紙盒,但不小心多剪開了一條棱,得到圖(2)中的紙片,請解答下列問題:

(1)小明共剪開   條棱;

(2)現(xiàn)在小明想將剪斷的紙片拼接到紙片上,構成該長方體紙盒的展開圖,請你在中畫出紙片的一種位置;

(3)請從A,B兩題中任選一題作答.

A.若長方體紙盒的長,寬,高分別為m,m,n(單位:cm,m>n),求(2)中展開圖的周長.

B.若長方體紙盒的長,寬,高分別是a,b,c(單位:cm,a>b>c),如圖(3),畫出它的展開圖中周長最大時的展開圖,并求出周長(用含a,b,c的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個樣本,2723,25,27,29,31,2730,32,3128,26,27,29,28,2426,27,2830,以2為組距畫出頻數(shù)分布直方圖

查看答案和解析>>

同步練習冊答案