如圖,矩形ABCD中, BC=2,點(diǎn)P是線段BC上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,平移線段PE得到CF,連接EF。問(wèn):四邊形PCFE的面積是否有最大值?若有,請(qǐng)求出面積的最大值及此時(shí)BP長(zhǎng);若沒(méi)有,請(qǐng)說(shuō)明理由。


解:有。

依題意,得四邊形PCFE是平行四邊形。

設(shè)BP=x,則PC=2﹣x ,平行四邊形PEFC的面積為S,

【考點(diǎn)】四邊形綜合題,旋轉(zhuǎn)和平移問(wèn)題,矩形的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),由實(shí)際問(wèn)題列函數(shù)關(guān)系式,二次函數(shù)的最值。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 把直線沿y軸方向平移m個(gè)單位后,與直線的交點(diǎn)在第二象限,則m的取值范圍是【    】

A.      B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在矩形ABCD中,AB=3,BC=4.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后立刻以原來(lái)的速度沿AB返回.點(diǎn)P、Q運(yùn)動(dòng)速度均為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為tt >0)秒.

(1)求線段AC的長(zhǎng)度;

(2)當(dāng)點(diǎn)Q從點(diǎn)B向點(diǎn)A運(yùn)動(dòng)時(shí)(未到達(dá)A點(diǎn)),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線為l

①當(dāng)l經(jīng)過(guò)點(diǎn)A時(shí),射線QPAD于點(diǎn)E,求AE的長(zhǎng);

②當(dāng)l經(jīng)過(guò)點(diǎn)B時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖①,在矩形紙片ABCD中,AB=+1,AD=

(1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長(zhǎng)為    

(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為    

(3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過(guò)頂點(diǎn)B,求弧D′D″的長(zhǎng).(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)

A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.

(1)請(qǐng)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).

(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱軸和頂點(diǎn)坐標(biāo).

(3)如圖1,在二次函數(shù)對(duì)稱軸上是否存在點(diǎn)P,使△APC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過(guò)點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連結(jié)BP. 將△ABP繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<180°),得到△A1B1P,連結(jié)AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)E、F.

      (1) 如圖1,當(dāng)0°<α<60°時(shí),在α角變化過(guò)程中,△BEF與△AEP始終存在       關(guān)系(填“相似”或“全等”),并說(shuō)明理由;

(2)如圖2,設(shè)∠ABP=β . 當(dāng)60°<α<180°時(shí),在α角變化過(guò)程中,是否存在△BEF與△AEP全等?若存在,求出αβ之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由;

(3)如圖3,當(dāng)α=60°時(shí),點(diǎn)E、F與點(diǎn)B重合. 已知AB=4,設(shè)DP=x,△A1BB1的面

積為S,求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖所示,直線l:y=3x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.把△AOB沿y軸翻折,點(diǎn)A落到點(diǎn)C,拋物線過(guò)點(diǎn)B、C和D(3,0).

(1)求直線BD和拋物線的解析式.

(2)若BD與拋物線的對(duì)稱軸交于點(diǎn)M,點(diǎn)N在坐標(biāo)軸上,以點(diǎn)N、B、D為頂點(diǎn)的三角形與△MCD相似,求所有滿足條件的點(diǎn)N的坐標(biāo).

(3)在拋物線上是否存在點(diǎn)P,使SPBD=6?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,拋物線與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C。點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知矩形紙片ABCD中,AB=1,BC=,將該紙片疊成一個(gè)平面圖形,折痕EF不經(jīng)過(guò)A點(diǎn)(E、F是該矩形邊界上的點(diǎn)),折疊后點(diǎn)A落在A′處,給出以下判斷:

①當(dāng)四邊形A,CDF為矩形時(shí),EF=;

②當(dāng)EF=時(shí),四邊形A′CDF為矩形;

③當(dāng)EF=2時(shí),四邊形BA′CD為等腰梯形;

④當(dāng)四邊形BA′CD為等腰梯形時(shí),EF=2。

  其中正確的是         (把所有正確結(jié)論序號(hào)都填在橫線上)。

查看答案和解析>>

同步練習(xí)冊(cè)答案