【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30日,在A點測得D點的仰角∠EAD=45°,在B點測得D點的仰角為∠CBD=60°,測得甲、乙這兩座建筑物的高度分別為( 。┟祝
A. 10,30 B. 30,30 C. 30﹣3,30 D. 30﹣30,30
【答案】D
【解析】
在Rt△BCD中可求得CD的長,即求得乙的高度,延長AE交CD于F,則AF∥BC,求得∠AFD=90°,在Rt△ADF中可求得DF,則可求得CF的長,即可求得甲的高度.
延長AE交CD于F,則AF∥BC,
∵AB⊥BC,DC⊥BC,
∴AF⊥DC,
∴∠AFD=∠AFC=∠ABC=∠BCD=90°.
∴四邊形ABCF為矩形,
∴AF=BC=30m,FC=AB.
∵∠DAE=45°,
∴∠ADF=45°,
∴DF=AF=30m,
在Rt△BCD中,DC=BCtan∠DBC=30,
∴FC=DCDF=3030,
答:甲建筑物的高AB為(3030)m,乙建筑物的高DC為30m.
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是( 。
A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1
C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數為____________°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延長線于F.
(1)求證:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校利用暑假進行田徑場的改造維修,項目承包單位派遣一號施工隊進場施工,計劃用40天時間完成整個工程:當一號施工隊工作5天后,承包單位接到通知,有一大型活動要在該田徑場舉行,要求比原計劃提前14天完成整個工程,于是承包單位派遣二號與一號施工隊共同完成剩余工程,結果按通知要求如期完成整個工程.
(1)若二號施工隊單獨施工,完成整個工程需要多少天?
(2)若此項工程一號、二號施工隊同時進場施工,完成整個工程需要多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB = 90°,AC = BC,D為BC邊的中點,BE⊥AB交AD的延長線于點E,CF平分∠ACB交AD于點F,連接CE.求證:(1)點D是EF的中點;(2)△CEF是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示:某一蓄水池的排水速度與排水時間之間的函數關系圖象
根據圖象求該蓄水池的蓄水量.
若要用不超過小時的時間排完蓄水池內的水,那么每小時至少應排水多少?
如果每小時排水,則排完蓄水池中的水需要多長時間?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com