如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點E、F(E在F左邊),以EF為邊作等邊三角形PEF,使頂點P在AD上,PE、PF分別交AC于點G、H.

(1)求△PEF的邊長;
(2)若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有什么數(shù)量關系?并證明你猜想的結(jié)論.
(1)2(2),證明見解析
解: (1)過  
矩形
,即,又
  ………………1分
是等邊三角形



 
的邊長為.  ……………………………3分
的數(shù)量關系是:………4分
中,

  …………………………………5分
是等邊三角形
  ……………………………6分



  …………………………………………8分

 ……………………………………………9分
(1)要求△PEF的邊長,需構(gòu)造直角三角形,那么就過P作PQ⊥BC于Q.利用∠PFQ的正弦值可求出PF,即△PEF的邊長;
(2)猜想:PH-BE=1.利用∠ACB的正切值可求出∠ACB的度數(shù),再由∠PFE=60°,可得出△HFC是等腰三角形,因此就有BE+EF+CF=BE+PH+2FH=3.再把其中FH用PH表示,化簡即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題


在△ABC中,∠ABC=45°,tan∠ACB=.如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC=,AC與y軸交于點E.

(1)求AC所在直線的函數(shù)解析式;
(2)過點O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點F(10,0),在△ABC的邊上取兩點P,Q,是否存在以O,P,Q為頂點的三角形與△OFP全等,且這兩個三角形在OP的異側(cè)?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題


小題1:計算
小題2:如圖3,已知線段,請用直尺和圓規(guī)作出線段的垂直平分線.

小題3:如圖4,已知,,,.求證:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD // BC,∠ABC = 90°,AB = 4,AD = 3,BC = 5,點M是邊CD的中點,聯(lián)結(jié)AM、BM

求:(1)△ABM的面積;
(2)∠MBC的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在銳角△ABC中,BC=5,sinA=.
(1)如圖1,求△ABC外接圓的直徑;
(2)如圖2,點I為△ABC的內(nèi)心,BA=BC,求AI的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某高速公路建設中需要確定隧道AB的長度.當飛機在離地面高度CE=1500m時,測量人員從C處測得A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.732,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一艘艦艇在海面下500米A點處測得俯角為30°前下方的海底C處有黑匣子信號發(fā)出,繼續(xù)在同一深度直線航行4000米后再次在B點處測得俯角為60°前下方的海底C處有黑匣子信號發(fā)出,求海底黑匣子C點距離海面的深度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

計算:-0+(--8cos60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

計算:

查看答案和解析>>

同步練習冊答案