【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).

(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

【答案】
(1)

解:把A(﹣1,0),C(0,2)代入y=﹣ x2+mx+n中得:

,

解得:

∴拋物線的表達式為:


(2)

解: =﹣ (x﹣ 2+ ;

∴D( ,0),

在Rt△OCD中,OC=2,OD= ,

由勾股定理得:CD= = ,

①當CD=DP1時,△PCD是等腰三角形,

∴P1 ),

②當CD=DP2時,△PCD是等腰三角形,

∴P2 ,﹣ ),

③當CD=CP3時,△PCD是等腰三角形,

過C作CE⊥DP1于E,

∵C(0,2),

∴DE=OC=2,

∵CD=CP3,

∴DE=P3E=2,

∴P3 ,4),

綜上所述,P點的坐標為:P1 , ),P2 ,﹣ ),P3 ,4)


(3)

解:如圖2,

∵A(﹣1,0),對稱軸是:x= ,

∴B(4,0),

設BC的解析式為:y=kx+b,

把B(4,0),C(0,2)代入得:

解得: ,

∴BC的解析式為:y=﹣ x+2,

設E ,F(xiàn)( ,

∴EF=﹣ ﹣(﹣ m+2)=﹣ +2m,

∴S四邊形BDCF=SBCD+SBFC= BDOC+ EFOB= × ×2+ (﹣ +2m)×4,

S=﹣m2+4m+2.5,

=﹣(m﹣2)2+6.5(0<m<4),

當m=2時,﹣ m+2=﹣ ×2+2=1,

∴當m=2時,四邊形CDBF的面積最大,最大為6.5,此時E(2,1).


【解析】(1)利用待定系數(shù)法求拋物線的表達式;(2)以CD為腰的等腰三角形有三個:①②以D為圓心,以CD為半徑畫弧交對稱軸于P1、P2 , ③以C為圓心,以CD為半徑畫弧,交對稱軸于P3 , 分別求出這三個點的坐標;(3)先根據(jù)對稱性求點B的坐標為(4,0),再求直線BC的解析式,設出點E和F的坐標,表示EF的長;則四邊形BDCF的面積等于兩個三角形面積的和,其中△BDC是定值,△BFC的面積=鉛直高度與水平寬度的積,代入面積公式可求得S的解析式,求最值即可.
【考點精析】認真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點),還要掌握二次函數(shù)的性質(zhì)(增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD中,CD=6cm,當邊CD向右平移時,長方形的面積發(fā)生了變化.

1)這個變化過程中,自變量、因變量各是什么?

2)如果BC的長為cm,那么長方形的面積可以表為   .

3)當BC的長從12cm增加到20cm時,長方形的面積增加了多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) 的圖像如圖所示,點A0位于坐標原點,點A1 , A2 , A3 , …,A2008在y軸的正半軸上,點B1 , B2 , B3 , …,B2008在二次函數(shù) 位于第一象限的圖像上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請把下面證明過程補充完整:

已知:如圖,∠ADC=∠ABCBE、DF分別平分∠ABC、ADC,且∠1=∠2

求證:∠A=∠C

證明:∵BE、DF分別平分∠ABCADC(已知),

∴∠1=ABC,3=ADC(角平分線定義)

∵∠ABC=∠ADC(已知),

∴∠1=∠3(等量代換)

∵∠1=∠2(已知),

∴∠2=∠3(等量代換)

∴_____∥_____ (___ __)

∴∠A+∠_____=180°C+∠_____=180°(___ __)

∴∠A=∠C(___ __)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行做文明郴州人演講比賽,聘請了10位評委為參賽選手打分,賽前,組委會擬定了四種記分方案:方案一:取所有評委所給的平均分;

方案二:在所有評委給的分中,去掉一個最高分,去掉一個最低分,取剩余得分的平均分;

方案三:取所有評委給分的中位數(shù);

方案四:取所有評委給分的眾數(shù).

為了探究四種記分方案的合理性,先讓一名表演選手(不參加正式比賽的)演講,讓10位評委給演講者評分,表演者得分如下表:

評委編號

1

2

3

4

5

6

7

8

9

10

打分

7.0

7.8

3.2

8.0

8.4

8.4

9.8

8.0

8.4

8.0

(1)請分別用上述四種方案計算表演者的得分;

(2)如果你是評委會成員,你會建議采用哪種可行的記分方案?你覺得哪幾種方案不合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過P作PEAB,通過平行線性質(zhì),可得APC=50°+60°=110°.

問題遷移:

(1)如圖3,ADBC,點P在射線OM上運動,當點P在A、B兩點之間運動時,ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關(guān)系?請說明理由;

(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出CPD、α、β間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一天小明和冬冬利用溫差來測量山峰的高度.冬冬在山腳測得的溫度是4℃,小明此時在山頂測得的溫度是2℃,已知該地區(qū)高度每升高100米,氣溫下降0.8℃,問這個山峰有多高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖并填空:如圖,每個小正方形的邊長為1個單位,每個小正方形的頂點叫格點.

(1)將△ABC向左平移8格,再向下平移1格.請在圖中畫出平移后的△A′B′C′

(2)利用網(wǎng)格在圖中畫出△ABC的中線CD,高線AE;

(3)△A′B′C′的面積為_____.

(4)在平移過程中線段BC所掃過的面積為 .

(5)在右圖中能使的格點P的個數(shù)有 個(點P異于A).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是

查看答案和解析>>

同步練習冊答案