【題目】己知是的直徑,為上一點,.
(Ⅰ)如圖①,過點作的切線,與的延長線交于點,求的大;
(Ⅱ)如圖②,為上一點,延長線與交于點.若,求的大。
【答案】(I)26(II)48
【解析】
(I)根據(jù)等腰三角形中有一底角為58度時,可得∠COA=64,根據(jù)切線的性質(zhì)得出∠OCP=90,進而求得∠P的度數(shù);
(II)先由(I)知∠AOC=64,根據(jù)圓周角定理得∠Q=∠AOC=32,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理得∠QAC=∠QCA=74,最后由三角形外角的性質(zhì)可得結(jié)論.
(I)∵OA=OC,∠OAC=58,
∴∠OCA=58
∴∠COA=1802×58=64
∵PC是⊙O的切線,
∴∠OCP=90,
∴∠P=9064=26;
(II)∵∠AOC=64,
∴∠Q=∠AOC=32,
∵AQ=CQ,
∴∠QAC=∠QCA=74,
∵∠OCA=58,
∴∠PCO=7458=16,
∵∠AOC=∠QCO+∠APC,
∴∠APC=6416=48.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4張相同的卡片上分別寫有數(shù)字-1、-3、4、6,將卡片的背面朝上,并洗勻.
(1)從中任意抽取1張,抽到的數(shù)字是奇數(shù)的概率是 ;
(2)從中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)中的;再從余下的卡片中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)中的.利用畫樹狀圖或列表的方法,求這個一次函數(shù)的圖象經(jīng)過第一、二、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】∠MON=45°,點P在射線OM上,點A,B在射線ON上(點B與點O在點A的兩側(cè)),且AB=1,以點P為旋轉(zhuǎn)中心,將線段AB逆時針旋轉(zhuǎn)90°,得到線段CD(點C與點A對應(yīng),點D與點B對應(yīng)).
(1)如圖,若OA=1,OP,依題意補全圖形;
(2)若OP,當(dāng)線段AB在射線ON上運動時,線段CD與射線OM有公共點,求OA的取值范圍;
(3)一條線段上所有的點都在一個圓的圓內(nèi)或圓上,稱這個圓為這條線段的覆蓋圓.若OA=1,當(dāng)點P在射線OM上運動時,以射線OM上一點Q為圓心作線段CD的覆蓋圓,直接寫出當(dāng)線段CD的覆蓋圓的直徑取得最小值時OP和OQ的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月按30天計算,這款商品將開展“每天降價1元”的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設(shè)第x天且x為整數(shù)的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點和.下列結(jié)論:
①;
②;
③當(dāng)時,拋物線與軸必有一個交點在點的右側(cè);
④拋物線的對稱軸為.
其中結(jié)論正確的個數(shù)有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(1,1)和(﹣1,0).下列結(jié)論:①a+c=1;②b2﹣4ac≥0;③當(dāng)a<0時,拋物線與x軸必有一個交點在點(1,0)的右側(cè);④拋物線的對稱軸為x=﹣.其中結(jié)論正確的個數(shù)有( )
A.4 個B.3 個C.2 個D.1 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(t,1)為函數(shù)y=ax2+bx+4(a,b為常數(shù),且a≠0)與y=x圖象的交點.
(1)求t;
(2)若函數(shù)y=ax2+bx+4的圖象與x軸只有一個交點,求a,b;
(3)若1≤a≤2,設(shè)當(dāng)≤x≤2時,函數(shù)y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當(dāng)△PAB為直角三角形時,AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與 x 軸交于點 C,與 y 軸交于點 B,拋物線 經(jīng)過 B、C 兩點.
(1)求拋物線的解析式;
(2)如圖,點 E 是拋物線上的一動點(不與 B,C 兩點重合),△BEC 面積記為 S,當(dāng) S 取何值時,對應(yīng)的點 E 有且只有三個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com