【題目】已知點(diǎn)A(t,1)為函數(shù)y=ax2+bx+4(a,b為常數(shù),且a≠0)與y=x圖象的交點(diǎn).
(1)求t;
(2)若函數(shù)y=ax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),求a,b;
(3)若1≤a≤2,設(shè)當(dāng)≤x≤2時(shí),函數(shù)y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
【答案】(1)t=1;(2)或;(3)m﹣n的最小值
【解析】
(1)把A(t,1)代入y=x即可得到結(jié)論;
(2)根據(jù)題意得方程組,解方程組即可得到結(jié)論;
(3)把A(1,1)代入y=ax2+bx+4得,b=3a,得到y=ax2(a+3)x+4的對(duì)稱(chēng)軸為直線(xiàn)x=,根據(jù)1≤a≤2,得到對(duì)稱(chēng)軸的取值范圍≤x≤2,當(dāng)x=時(shí),得到m=,當(dāng)x=2時(shí),得到n=,即可得到結(jié)論.
解:(1)把A(t,1)代入y=x得t=1;
(2)∵y=ax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),
∴,
∴或;
(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,
∴y=ax2﹣(a+3)x+4=a(x﹣)2﹣,
∴對(duì)稱(chēng)軸為直線(xiàn)x=,
∵1≤a≤2,
∴≤x=≤2,
∵≤x≤2,
∴當(dāng)x=時(shí),y=ax2+bx+4的最大值為
當(dāng)x=2時(shí),n=﹣,
∴m﹣n=,
∵1≤a≤2,
∴當(dāng)a=2時(shí),m﹣n的值最小,
即m﹣n的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣3,0),B(1,0)交于點(diǎn)C,拋物線(xiàn)的頂點(diǎn)為點(diǎn)D.
(1)拋物線(xiàn)的表達(dá)式及頂點(diǎn)D的坐標(biāo).
(2)若點(diǎn)F是線(xiàn)段AD上一個(gè)動(dòng)點(diǎn),
①如圖1,當(dāng)FC+FO的值最小時(shí),求點(diǎn)F的坐標(biāo);
②如圖2,以點(diǎn)A,F,O為頂點(diǎn)的三角形能否與△ABC相似?若能,求出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點(diǎn)D在BC上,且CD=3DB,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則tan∠BED的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知是的直徑,為上一點(diǎn),.
(Ⅰ)如圖①,過(guò)點(diǎn)作的切線(xiàn),與的延長(zhǎng)線(xiàn)交于點(diǎn),求的大。
(Ⅱ)如圖②,為上一點(diǎn),延長(zhǎng)線(xiàn)與交于點(diǎn).若,求的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,連接AC,O是AC的中點(diǎn),M是AD上一點(diǎn),且MD=1,P是BC上一動(dòng)點(diǎn),則PM﹣PO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】深圳市政府計(jì)劃投資1.4萬(wàn)億元實(shí)施東進(jìn)戰(zhàn)略.為了解深圳市民對(duì)東進(jìn)戰(zhàn)略的關(guān)注情況.某校數(shù)學(xué)興趣小組隨機(jī)采訪(fǎng)部分深圳市民,對(duì)采訪(fǎng)情況制作了統(tǒng)計(jì)圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | m | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | n |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計(jì)圖可得此次采訪(fǎng)的人數(shù)為 人,m= ,n= ;
(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)上述采訪(fǎng)結(jié)果,請(qǐng)估計(jì)在15000名深圳市民中,高度關(guān)注東進(jìn)戰(zhàn)略的深圳市民約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、E、F分別在BC、AB、AC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).
(1)當(dāng)AE=8時(shí),求EF的長(zhǎng);
(2)設(shè)AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x為何值時(shí),y有最大值,最大值是多少?
(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線(xiàn)CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“農(nóng)民也能報(bào)銷(xiāo)醫(yī)療費(fèi)了!”這是國(guó)家推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢(qián),就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時(shí)可得到按一定比例返回的返回款,這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險(xiǎn)的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答以下問(wèn)題:
(1)本次調(diào)查了______名村民,被調(diào)查的村民中,有______人參加合作醫(yī)療得到了返回款?
(2)若該鄉(xiāng)有10000名村民,請(qǐng)你估計(jì)有多少人參加了合作醫(yī)療?
(3)要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年平均增長(zhǎng)率相同,求年平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖像如圖所示,對(duì)稱(chēng)軸為直線(xiàn)x=1.有位學(xué)生寫(xiě)出了以下五個(gè)結(jié)論:
(1)ac>0;
(2)方程ax2+bx+c=0的兩根是x1=-1,x2=3;
(3)2a-b=0;
(4)當(dāng)x>1時(shí),y隨x的增大而減;
(5)3a+2b+c>0
則以上結(jié)論中不正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com