【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點(diǎn)D在BC上,且CD=3DB,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則tan∠BED的值是_____.
【答案】
【解析】
先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,求出CD=,CF=x,再根據(jù)勾股定理即可求解.
解:∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠A=∠B=∠EDF=45°,
由三角形外角性質(zhì)得:∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
∵CD=3DB,,
∴CD=,
設(shè)CF=x,則DF=FA=,
∴在Rt△CDF中,由勾股定理得,
CF2+CD2=DF2,
即,
解得:,
∴,
∴;
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,AB=2,點(diǎn)C,點(diǎn)D在⊙O上,CD=1,直線(xiàn)AD,BC交于點(diǎn)E.
(Ⅰ)如圖1,若點(diǎn)E在⊙O外,求∠AEB的度數(shù);
(Ⅱ)如圖2,若點(diǎn)E在⊙O內(nèi),求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是樓梯一部分示意圖,樓梯臺(tái)階寬度均為,高度均為,且,均與樓面垂直,點(diǎn),分別是,的中點(diǎn),,,.
(1)判斷與的位置關(guān)系,并說(shuō)明理由;
(2)求的值;
(3)求點(diǎn)到水平樓面的距離(精確到).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在雙曲線(xiàn)y=上,點(diǎn)B在雙曲線(xiàn)y=(k≠0)上,AB∥x軸,過(guò)點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為⊙O直徑AB延長(zhǎng)線(xiàn)上的一點(diǎn),PC切⊙O于點(diǎn)C,過(guò)點(diǎn)B作CP的垂線(xiàn)BH交⊙O于點(diǎn)D,連結(jié)AC,CD.
(1)求證:∠PBH=2∠HDC;
(2)若sin∠P=,BH=3,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家銷(xiāo)售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷(xiāo)售40件,每銷(xiāo)售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月按30天計(jì)算,這款商品將開(kāi)展“每天降價(jià)1元”的促銷(xiāo)活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷(xiāo)售量增加2件,設(shè)第x天且x為整數(shù)的銷(xiāo)售量為y件.
直接寫(xiě)出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤(rùn)為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生的安全意識(shí),我市某中學(xué)組織初三年級(jí)1000名學(xué)生參加了“校園安全知識(shí)競(jìng)賽”,隨機(jī)抽取了一個(gè)班學(xué)生的成績(jī)進(jìn)行整理,分為,,,四個(gè)等級(jí),并把結(jié)果整理繪制成條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖(部分),請(qǐng)依據(jù)如圖提供的信息,完成下列問(wèn)題:
(1)請(qǐng)估計(jì)本校初三年級(jí)等級(jí)為的學(xué)生人數(shù);
(2)學(xué)校決定從得滿(mǎn)分的3名女生和2名男生中隨機(jī)抽取3人參加市級(jí)比賽,請(qǐng)求出恰好抽到2名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)A1(1,0)作x軸的垂線(xiàn),交直線(xiàn)y=2x于點(diǎn)B1;點(diǎn)A2與點(diǎn)O關(guān)于直線(xiàn)A1B1對(duì)稱(chēng);過(guò)點(diǎn)A2(2,0)作x軸的垂線(xiàn),交直線(xiàn)y=2x于點(diǎn)B2;點(diǎn)A3與點(diǎn)O關(guān)于直線(xiàn)A2B2對(duì)稱(chēng);過(guò)點(diǎn)A3(4,0)作x軸的垂線(xiàn),交直線(xiàn)y=2x于點(diǎn)B3;…,按此規(guī)律作下去,則點(diǎn)B10的坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 是⊙O 的弦,半徑OE⊥ AB ,P 為 AB 的延長(zhǎng)線(xiàn)上一點(diǎn),PC 與⊙O相切于點(diǎn) C,連結(jié) CE,交 AB 于點(diǎn) F,連結(jié) OC.
(1)求證:PC=PF.
(2)連接 BE,若∠CEB=30°,半徑為 8,tan P ,求 FB 的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com