【題目】如圖,在矩形ABCD中,AB=4,AD=5,連接AC,O是AC的中點(diǎn),M是AD上一點(diǎn),且MD=1,P是BC上一動點(diǎn),則PM﹣PO的最大值為_____.
【答案】
【解析】
連接MO并延長交BC于P,則此時,PMPO的值最大,且PMPO的最大值=OM,根據(jù)全等三角形的性質(zhì)得到AM=CP=4,OM=OP,求得PB=1,過M作MN⊥BC于N,得到四邊形MNCD是矩形,得到MN=CD,CN=DM,根據(jù)勾股定理即可得到結(jié)論.
∵在矩形ABCD中,AD=5,MD=1,
∴AM=AD﹣DM=5﹣1=4,
連接MO并延長交BC于P,
則此時,PM﹣PO的值最大,且PM﹣PO的最大值=OM,
∵AM∥CP,
∴∠MAO=∠PCO,
∵∠AOM=∠COP,AO=CO,
∴△AOM≌△COP(ASA),
∴AM=CP=4,OM=OP,
∴PB=5﹣4=1,
過M作MN⊥BC于N,
∴四邊形MNCD是矩形,
∴MN=CD=AB=4,CN=DM=1,
∴PN=5﹣1﹣1=3,
∴MP=,
∴OM==.
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形 ABCD 中,放入六個形狀大小相同的長方形,所標(biāo)尺寸如圖所示, 則圖中陰影部分面積為( )
A. 44cm2B. 36cm2C. 96 cm2D. 84cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,以為一邊,在第一象限作菱形,并使,再以對角線為一邊,在如圖所示的一側(cè)作相同形狀的菱形,再依次作菱形,,……,,則的長度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的△ABC的外接圓,點(diǎn)D是劣弧的中點(diǎn),連結(jié)AD并延長,與過C點(diǎn)的直線交于P,OD與BC相交于點(diǎn)E.
(1)求證:OE=AC;
(2)連接CD,若∠PCD=∠PAC,試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
(3)在(2)的條件下,當(dāng)AC=6,AB=10時,求切線PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠疫情期間,某校開展線上教學(xué),有“錄播”和“直播”兩種教學(xué)方式供學(xué)生選擇其中一種.為分析該校學(xué)生線上學(xué)習(xí)情況,在接受這兩種教學(xué)方式的學(xué)生中各隨機(jī)抽取40人調(diào)查學(xué)習(xí)參與度,數(shù)據(jù)整理結(jié)果如表(數(shù)據(jù)分組包含左端值不包含右端值).
參與度 人數(shù) 方式 | 0.2~0.4 | 0.4~0.6 | 0.6~0.8 | 0.8~1 |
錄播 | 4 | 16 | 12 | 8 |
直播 | 2 | 10 | 16 | 12 |
(1)你認(rèn)為哪種教學(xué)方式學(xué)生的參與度更高?簡要說明理由.
(2)從教學(xué)方式為“直播”的學(xué)生中任意抽取一位學(xué)生,估計該學(xué)生的參與度在0.8及以上的概率是多少?
(3)該校共有800名學(xué)生,選擇“錄播”和“直播”的人數(shù)之比為1:3,估計參與度在0.4以下的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a≠0)的圖像經(jīng)過點(diǎn)A(0,-3)、B(1,0)、C(3,0),聯(lián)結(jié)AB、AC.
(1)求這個二次函數(shù)的解析式;
(2)點(diǎn)D是線段AC上的一點(diǎn),聯(lián)結(jié)BD,如果,求tan∠DBC的值;
(3)如果點(diǎn)E在該二次函數(shù)圖像的對稱軸上,當(dāng)AC平分∠BAE時,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從左向右依次擺放序號分別為1,2,3,…,n的小桶,其中任意相鄰的四個小桶所放置的小球個數(shù)之和相等.
嘗試 求x+y的值;
應(yīng)用 若n=22,則這些小桶內(nèi)所放置的小球個數(shù)之和是多少?
發(fā)現(xiàn) 用含k(k為正整數(shù))的代數(shù)式表示裝有“4個球”的小桶序號.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司用6000元購進(jìn)A,B兩種電話機(jī)25臺,購買A種電話機(jī)與購買B種電話機(jī)的費(fèi)用相等.已知A種電話機(jī)的單價是B種電話機(jī)單價的1.5倍.
(1)求A,B兩種電話機(jī)的單價各是多少?
(2)若計劃用不超過8000元的資金再次購進(jìn)A,B兩種話機(jī)共30臺,已知A,B兩種電話機(jī)的進(jìn)價不變,求最多能購進(jìn)多少臺A種電話機(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中放入個大小形狀幾乎完全相同實(shí)驗(yàn)用的雞蛋,雞蛋的質(zhì)量有微小的差距(用手感覺不到差異),質(zhì)量分別為、、克,已知隨機(jī)的摸出一個雞蛋,摸到克和克的雞蛋的概率是相等的.
(1)求這四個雞蛋質(zhì)量的眾數(shù)和中位數(shù)
(2)小明做實(shí)驗(yàn)需要拿走一個雞蛋,芳芳在小明拿走后從剩下的三個雞蛋中隨機(jī)的拿走一個
①通過計算分析小明拿走一個雞蛋后,剩下的三個雞蛋質(zhì)量的中位數(shù)是多少?
②假設(shè)小明拿走的雞蛋質(zhì)量為克,芳芳隨機(jī)的拿出一個雞蛋后又放回,之后再隨機(jī)的拿出一個雞蛋,請用樹狀圖求芳芳兩次拿到都是克的雞蛋的概率?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com