【題目】某公司用6000元購進A,B兩種電話機25臺,購買A種電話機與購買B種電話機的費用相等.已知A種電話機的單價是B種電話機單價的1.5倍.
(1)求A,B兩種電話機的單價各是多少?
(2)若計劃用不超過8000元的資金再次購進A,B兩種話機共30臺,已知A,B兩種電話機的進價不變,求最多能購進多少臺A種電話機?
【答案】(1)A種電話機的單價是300元,B種電話機的單價是200元.(2)最多能購進20臺A種電話機.
【解析】
(1)設B種電話機的單價是x元,則A種電話機的單價是1.5x元,根據(jù)數(shù)量=總價÷單價結合用6000元購進A,B兩種電話機25臺(且購買A種電話機與購買B種電話機的費用相等),即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;
(2)設購進m臺A種電話機,則購進(30﹣m)臺B種電話機,根據(jù)總價=單價×數(shù)量結合總價不超過8000元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.
解:(1)設B種電話機的單價是x元,則A種電話機的單價是1.5x元,
依題意,得:=25,
解得:x=200,
經(jīng)檢驗,x=200是原方程的解,且符合題意,
∴1.5x=300.
答:A種電話機的單價是300元,B種電話機的單價是200元.
(2)設購進m臺A種電話機,則購進(30﹣m)臺B種電話機,
依題意,得:300m+200(30﹣m)≤8000,
解得:m≤20.
答:最多能購進20臺A種電話機.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,連接AC,O是AC的中點,M是AD上一點,且MD=1,P是BC上一動點,則PM﹣PO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,M是AB的中點,P是BC邊上的動點,連結PM,以點P為圓心,PM長為半徑作⊙P.
(1)當BP= 時,△MBP~△DCP;
(2)當⊙P與正方形ABCD的邊相切時,求BP的長;
(3)設⊙P的半徑為x,請直接寫出正方形ABCD中恰好有兩個頂點在圓內(nèi)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A(0,8),B(4,0),直線y=﹣x沿x軸作平移運動,平移時交OA于D,交OB于C.
(1)當直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達點B時結束運動,過點D作DE⊥y軸交AB于點E,連接CE,設運動時間為t(s).
①是否存在t值,使得△CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應的t值;如果不能,請說明理由.
②將△CDE沿DE翻折后得到△FDE,設△EDF與△ADE重疊部分的面積為y(單位長度的平方).求y關于t的函數(shù)關系式及相應的t的取值范圍;
(2)若點M是AB的中點,將MC繞點M順時針旋轉90°得到MN,連接AN,請直接寫出AN+MN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2;④﹣<a<﹣.其中正確結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與y軸交于點A(0,-4),與x軸交于點B(-2,0),C(8,0),連接AB,AC.
(1)求出二次函數(shù)表達式;
(2)若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AB,交AC于點M,連接AN,當以點A,M,N為頂點的三角形與以點A,B,O為頂點的三角形相似時,求此時點N的坐標;
(3)若點N在x軸上運動,當以點A,N,C為頂點的三角形是等腰三角形時,請直接寫出此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+c與y軸交于點A(0,6),與x軸交于點B(﹣2,0),C(6,0).
(1)直接寫出拋物線的解析式及其對稱軸;
(2)如圖2,連接AB,AC,設點P(m,n)是拋物線上位于第一象限內(nèi)的一動點,且在對稱軸右側,過點P作PD⊥AC于點E,交x軸于點D,過點P作PG∥AB交AC于點F,交x軸于點G.設線段DG的長為d,求d與m的函數(shù)關系式,并注明m的取值范圍;
(3)在(2)的條件下,若△PDG的面積為,
①求點P的坐標;
②設M為直線AP上一動點,連接OM交直線AC于點S,則點M在運動過程中,在拋物線上是否存在點R,使得△ARS為等腰直角三角形?若存在,請直接寫出點M及其對應的點R的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線經(jīng)過點和,點的坐標為,點是線段上的動點(點不與點重合),直線經(jīng)過點,并與交于點,過點作,交于點.
(1)求的函數(shù)表達式;
(2)當時,
①求點的坐標;
②求.
(3)將點的橫坐標記為,在點移動的過程中,直接寫出的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com