【題目】如圖,點(diǎn)A0,4)、B20),點(diǎn)C、D分別是OA、AB的中點(diǎn),在射線CD上有一動(dòng)點(diǎn)P,若△ABP是直角三角形,則點(diǎn)P的坐標(biāo)為_____.

【答案】6,2);(1,2).

【解析】

根據(jù)勾股定理得到AB=2,根據(jù)三角形中位線的性質(zhì)得到AC=OC=2,CD=1,AD=BD=,①當(dāng)∠APB=90°時(shí),根據(jù)直角三角形的性質(zhì)得到PD=AD=,于是得到P+1,2),②當(dāng)∠ABP=90°時(shí),如圖,過(guò)PPCx軸于C,根據(jù)相似三角形的性質(zhì)得到BP=AB=2,得到PC=6,求得P6,2).

解:∵點(diǎn)A0,4),點(diǎn)B2,0),
OA=4,OB=2
AB=2,
∵點(diǎn)CD分別是OA,AB的中點(diǎn),
AC=OC=2,CD=1AD=BD=,
①當(dāng)∠APB=90°時(shí),
AD=BD,
PD=AD=,
PC=CD+PD=+1,
P+1,2),
②當(dāng)∠ABP=90°時(shí),如圖,


過(guò)PPCx軸于C,
ABO∽△BPC,

BP=AB=2,
PC=OB=2,
BC=4,
PC=OC=2+4=6
P6,2),
故答案為:(+1,2)或(6,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的一元二次方程

1)若該方程有兩個(gè)實(shí)數(shù)根,求的取值范圍.

2)在(1)的條件下,取符合題意的最大整數(shù),求一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查AB兩個(gè)區(qū)的初三學(xué)生體育測(cè)試成績(jī),從兩個(gè)區(qū)各隨機(jī)抽取了1000名學(xué)生的成績(jī)(滿分:40分,個(gè)人成績(jī)四舍五入向上取整數(shù))

A區(qū)抽樣學(xué)生體育測(cè)試成績(jī)的平均分、中位數(shù)、眾數(shù)如下:

平均分

中位數(shù)

眾數(shù)

37

36

37

B區(qū)抽樣學(xué)生體育測(cè)試成績(jī)的分布如下:

成績(jī)

28≤x31

31≤x34

34≤x37

37≤x40

40(滿分)

人數(shù)

60

80

140

m

220

請(qǐng)根據(jù)以上信息回答下列問(wèn)題

1m  ;

2)在兩區(qū)抽樣的學(xué)生中,體育測(cè)試成績(jī)?yōu)?/span>37分的學(xué)生,在  (填AB)區(qū)被抽樣學(xué)生中排名更靠前,理由是 ;

3)如果B區(qū)有10000名學(xué)生參加此次體育測(cè)試,估計(jì)成績(jī)不低于34分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線頂點(diǎn)Ax軸負(fù)半軸上,與y軸交于點(diǎn)B,OB1,△OAB為等腰直角三角形

1)求拋物線的解析式

2)若點(diǎn)C在拋物線上,若△ABC為直角三角形,求點(diǎn)C的坐標(biāo)

3)已知直線DE過(guò)點(diǎn)(-1,-4),交拋物線于點(diǎn)D、E,過(guò)DDFx軸,交拋物線于點(diǎn)F,求證:直線EF經(jīng)過(guò)一個(gè)定點(diǎn),并求定點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷商銷售一種成本價(jià)為10元/kg的商品,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷售價(jià)不得高于18元/kg.在銷售過(guò)程中發(fā)現(xiàn)銷量ykg)與售價(jià)x(元/kg)之間滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表所示:

x

12

14

15

17

y

36

32

30

26

⑴求yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤(rùn),求售價(jià)應(yīng)定為多少元/kg?

⑶設(shè)銷售這種商品每天所獲得的利潤(rùn)為W元,求Wx之間的函數(shù)關(guān)系式;并求出該商品銷售單價(jià)定為多少元時(shí),才能使經(jīng)銷商所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,直線BMAB于點(diǎn)B,點(diǎn)CO上,分別連接BC,AC,且AC的延長(zhǎng)線交BM于點(diǎn)D,CFO的切線交BM于點(diǎn)F

(1)求證:CFDF;

(2)連接OF,若AB=10,BC=6,求線段OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題探究)小敏在學(xué)習(xí)了RtABC的性質(zhì)定理后,繼續(xù)進(jìn)行研究.

1)(i)她發(fā)現(xiàn)圖①中,如果∠A30°BCAB存在特殊的數(shù)量關(guān)系是   ;

ii)她將△ABC沿AC所在的直線翻折得△AHC,如圖②,此時(shí)她證明了BCAB的關(guān)系;請(qǐng)根據(jù)小敏證明的思路,補(bǔ)全探究的證明過(guò)程;

猜想:如果∠A30°,BCAB存在特殊的數(shù)量關(guān)系是   ;

證明:△ABC沿AC所在的直線翻折得△AHC

2)如圖③,點(diǎn)EF分別在四邊形ABCD的邊BC、CD上,且∠B=∠D90°,連接AE、AF、EF,將△ABE、△ADF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形,連接AC,若∠EAF30°,AB227,則△CEF的周長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a0)y軸交于點(diǎn)A,將點(diǎn)A向右平移2個(gè)單位長(zhǎng)度,得到點(diǎn)B.直線x軸,y軸分別交于點(diǎn)C,D.

1)求拋物線的對(duì)稱軸.

2)若點(diǎn)A與點(diǎn)D關(guān)于x軸對(duì)稱.

①求點(diǎn)B的坐標(biāo).

②若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案