分析:(1)對同類項(xiàng)合并進(jìn)行化簡.
(2)先合并同類項(xiàng)化成最簡式,然后求解.
(3)根據(jù)已知方程得到x,y的值.然后通過合并同類項(xiàng)將整式化簡成最簡式代入x,y的值求解.
解答:解:(1)原式=4x
2-2x-1-{5x
2-[8x-2-3x
2-3x]-x
2}=4x
2-2x-1-{5x
2-8x+2+3x
2+3x-x
2}=4x
2-2x-1-5x
2+8x-2-3x
2-3x+x
2=-3x
2+3x-3
(2)原式=5abc-{2a
2b-[3abc-4ab
2+a
2b]}+3ab
2=5abc-{2a
2b-3abc+4ab
2-a
2b}+3ab
2=5abc-2a
2b+3abc-4ab
2+a
2b+3ab
2=8abc-a
2b-ab
2;將a,b,c的值代入得:原式=
(3)根據(jù)題意得,(x-2)
2+|xy-4|=0則,(x-2)
2=0,|xy-4|=0解得:x=2,y=2
原式=3x
2y+{-2x
2y-[-2xy+(x
2y-4x
2)-xy]+xy
2}=3x
2y+{-2x
2y-[-2xy+x
2y-4x
2-xy]+xy
2}=3x
2y+{-2x
2y+2xy-x
2y+4x
2+xy+xy
2}=3x
2y-2x
2y+2xy-x
2y+4x
2+xy+xy
2=4x
2+3xy+xy
2
將x=2,y=2代入得:原式=36
點(diǎn)評:對整式的化簡首先去括號,同時(shí)含有小括號,中括號,大括號的從里往外一層一層去括號.在去括號時(shí)應(yīng)注意去掉括號后單項(xiàng)式應(yīng)變換符合.去完括號對整式進(jìn)行合并同類項(xiàng)來化簡.