【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
【答案】
(1)
證明:∵AB=AD,
∴點A在線段BD的垂直平分線上,
∵CB=CD,
∴點C在線段BD的垂直平分線上,
∴直線AC是線段BD的垂直平分線,
∴AC⊥BD,即四邊形ABCD是垂美四邊形;
(2)
猜想結(jié)論:垂美四邊形的兩組對邊的平方和相等.
如圖2,已知四邊形ABCD中,AC⊥BD,垂足為E,
求證:AD2+BC2=AB2+CD2
證明:∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2;
(3)
解:連接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,
,
∴△GAB≌△CAE,
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四邊形CGEB是垂美四邊形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=4 ,BE=5 ,
∴GE2=CG2+BE2﹣CB2=73,
∴GE=
【解析】(1)根據(jù)垂直平分線的判定定理證明即可;(2)根據(jù)垂直的定義和勾股定理解答即可;(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點P從點B出發(fā),以 cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā),以1cm/s的速度沿BA﹣AC方向運動到點C停止,若△BPQ的面積為y(cm2),運動時間為x(s),則下列最能反映y與x之間函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求該拋物線與x軸的交點坐標(biāo);
(2)若a= ,c=2+b且拋物線在﹣2≤x≤2區(qū)間上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在實數(shù)x,使得相應(yīng)的y的值為1,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF= BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點.
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;
(2)求△AOB的面積;
(3)我們知道,一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向下平移1個長度單位得到.試結(jié)合平移解決下列問題:在(1)的條件下,請你試探究:
①函數(shù)y= 的圖象可以由y= 的圖象經(jīng)過怎樣的平移得到?
②點P(x1 , y1)、Q (x2 , y2) 在函數(shù)y= 的圖象上,x1<x2 . 試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.
(1)求證:△EAB≌△GAD;
(2)若AB=3 ,AG=3,求EB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,點E、F分別為AB、AD的中點,連接CE、CF.
(1)求證:CE=CF;
(2)如圖2,若H為AB上一點,連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com