【題目】解方程:
(1) =
(2)x2﹣7x+10=0.

【答案】
(1)解:去分母得x+3=2x,

解得x=3,

檢驗:當(dāng)x=3時,x(x+3)≠0,

所以x=3為原方程的解


(2)解:(x﹣2)(x﹣5)=0,

x﹣2=0或x﹣5=0,

所以x1=2,x2=5


【解析】(1)先去分母,把分式方程化為一元一次方程,解一元一次方程得到x的值,然后進(jìn)行檢驗確定原分式方程的解;(2)利用因式分解法解方程.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用因式分解法和去分母法的相關(guān)知識可以得到問題的答案,需要掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢;先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達(dá)燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:

目的地
車型

A村(元/輛)

B村(元/輛)

大貨車

800

900

小貨車

400

600


(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?0分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9


(1)甲隊成績的中位數(shù)是分,乙隊成績的眾數(shù)是分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4分2 , 則成績較為整齊的是隊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,E為AB的中點(diǎn),DE⊥AB.

(1)求∠ABC的度數(shù);
(2)如果 ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年6月份,我市某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往深圳,已知甲種貨車可裝荔枝4噸和香蕉1噸,乙種貨車可裝荔枝香蕉各2噸;

(1)該果農(nóng)安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)2000元,乙種貨車每輛要付運(yùn)輸費(fèi)1300元,則該果農(nóng)應(yīng)選擇哪種方案使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.
②若點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解該校七年級學(xué)生的身高情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成扇形統(tǒng)計圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測量時精確到1cm):

(1)請根據(jù)所提供的信息計算身高在160~165cm范圍內(nèi)的學(xué)生人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(2)樣本的中位數(shù)在統(tǒng)計圖的哪個范圍內(nèi)?
(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級學(xué)生身高的平均數(shù)為159cm,方差為0.6,那么(填“七年級”或“八年級”)學(xué)生的身高比較整齊.

查看答案和解析>>

同步練習(xí)冊答案