【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)在④和⑤后面的橫線上分別寫出相應(yīng)的等式:

1=121+3=22;1+3+5=32_____________;_____________;….

(2)通過猜想寫出與第n個(gè)點(diǎn)陣圖相對應(yīng)的等式.

【答案】(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.

【解析】

根據(jù)圖示和數(shù)據(jù)可知規(guī)律是:等式左邊是連續(xù)的奇數(shù)和,等式右邊是等式左邊的首數(shù)與末數(shù)的平均數(shù)的平方,據(jù)此進(jìn)行解答即可.

(1)由圖①知黑點(diǎn)個(gè)數(shù)為1個(gè),

由圖②知在圖①的基礎(chǔ)上增加3個(gè),

由圖③知在圖②基礎(chǔ)上增加5個(gè),

則可推知圖④應(yīng)為在圖③基礎(chǔ)上增加7個(gè)即有1+3+5+7=42

圖⑤應(yīng)為1+3+5+7+9=52,

故答案為:④1+3+5+7=42;1+3+5+7+9=52;

(2)(1)中推理可知第n個(gè)圖形黑點(diǎn)個(gè)數(shù)為1+3+5+…+(2n-1)=n2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)(1)班現(xiàn)要從A、B兩位男生和D、E兩位女生中,選派學(xué)生代表本班參加全!爸腥A好詩詞”大賽.
(1)如果選派一位學(xué)生代表參賽,那么選派到的代表是A的概率 ;
(2)如果選派兩位學(xué)生代表參賽,求恰好選派一男一女兩位同學(xué)參賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话耄罅⒖袒謴?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問:(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在陽光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場.
(1)如果確定小亮打第一場,再從其余三人中隨機(jī)選取一人打第一場,求恰好選中大剛的概率;
(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機(jī)的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)3x+2(x2-y)-3(2x2+x-y),其中x=,y=-3;

(2)3a2c-[2ab2-2(abc-ab2)+3a2c]-abc,其中a=-,b=2,c=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB,COD是等腰直角三角形,點(diǎn)DAB上,

(1)求證:△AOC≌△BOD;

(2)若AD=3,BD=1,求CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在周長為12的菱形ABCD,AE=1,AF=2,P為對角線BD上一動(dòng)點(diǎn),EP+FP的最小值為( )

A. 5 B. 8 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市種植某種綠色蔬菜,全部用來出口.為了擴(kuò)大出口規(guī)模,該市決定對這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植﹣畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會(huì)相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生到距離學(xué)校6千米的科技館去參觀,小華因事沒能乘上學(xué)校的包車,于是準(zhǔn)備在學(xué)校門口改乘出租車去科技館,出租車收費(fèi)標(biāo)準(zhǔn)有兩種類型,如下表:

里程

甲類收費(fèi)(元)

乙類收費(fèi)(元)

3千米以下(包含3千米)

7.00

6.00

3千米以上,每增加1千米

1.60

1.40

(1)設(shè)出租車行駛的里程為x千米(x取正整數(shù)),分別寫出兩種類型的總收費(fèi)(用含x的代數(shù)式表示);

(2)小華身上僅有11元,他乘出租車到科技館車費(fèi)夠不夠請說明理由.

查看答案和解析>>

同步練習(xí)冊答案