【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
問:(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.
【答案】(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要19.5時(shí)間;(2)M所對(duì)應(yīng)的數(shù)為5;(3)t的值為3、6.75、10.5或18.
【解析】試題分析:(1)根據(jù)路程除以速度等于時(shí)間,分別計(jì)算各段所用的時(shí)間,相加即可得答案; (2)由題可知,P、Q兩點(diǎn)相遇在線段OB上于M處,設(shè)OM=x.根據(jù)相遇時(shí)P,Q運(yùn)動(dòng)所用的時(shí)間相等,列出方程,解方程即可得答案;(3)根據(jù)PO與BQ的時(shí)間相等,可得方程,根據(jù)解方程,可得答案;(3)P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等有4種可能:①動(dòng)點(diǎn)Q在CB上,動(dòng)點(diǎn)P在AO上;②動(dòng)點(diǎn)Q在CB上,動(dòng)點(diǎn)P在OB上;③動(dòng)點(diǎn)Q在BO上,動(dòng)點(diǎn)P在OB上;④動(dòng)點(diǎn)Q在OA上,動(dòng)點(diǎn)P在BC上;根據(jù)這四種情況分別列出方程,解方程求t值即可.
試題解析:
(1)點(diǎn)P運(yùn)動(dòng)至點(diǎn)C時(shí),所需時(shí)間t=11÷2+10÷1+8÷2=19.5(秒),
答:動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要19.5時(shí)間;
(2)由題可知,P、Q兩點(diǎn)相遇在線段OB上于M處,設(shè)OM=x.
則11÷2+x÷1=8÷1+(10﹣x)÷2,
x=5,
答:M所對(duì)應(yīng)的數(shù)為5.
(3)P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等有4種可能:
①動(dòng)點(diǎn)Q在CB上,動(dòng)點(diǎn)P在AO上,
則:8﹣t=11﹣2t,解得:t=3.
②動(dòng)點(diǎn)Q在CB上,動(dòng)點(diǎn)P在OB上,
則:8﹣t=(t﹣5.5)×1,解得:t=6.75.
③動(dòng)點(diǎn)Q在BO上,動(dòng)點(diǎn)P在OB上,
則:2(t﹣8)=(t﹣5.5)×1,解得:t=10.5.
④動(dòng)點(diǎn)Q在OA上,動(dòng)點(diǎn)P在BC上,
則:10+2(t﹣15.5)=t﹣13+10,解得:t=18,
綜上所述:t的值為3、6.75、10.5或18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
《張丘建算經(jīng)》是一部數(shù)學(xué)問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿.其中提出并解決了一個(gè)在數(shù)學(xué)史上非常著名的不定方程問題,通常稱為“百雞問題”:“今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一.凡百錢買雞百只,問雞翁、母、雛各幾何.”
譯文:每一只公雞值五文錢,每一只母雞值三文錢,每三只小雞值一文錢.現(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?
結(jié)合你學(xué)過的知識(shí),解決下列問題:
(1)若設(shè)母雞有x只,公雞有y只,
① 小雞有__________只,買小雞一共花費(fèi)__________文錢;(用含x,y的式子表示)
②根據(jù)題意,列出一個(gè)含有x,y的方程:__________________;
(2)若對(duì)“百雞問題”增加一個(gè)條件:母雞數(shù)量是公雞數(shù)量的4倍多2只,求此時(shí)公雞、母雞、小雞各有多少只?
(3)除了問題(2)中的解之外,請(qǐng)你再直接寫出兩組符合“百雞問題”的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB∥DC,AD=BC
B.AB∥DC,AD∥BC
C.AB=DC,AD=BC
D.OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,為必然事件的是( )
A.太陽從東方升起B.發(fā)射一枚導(dǎo)彈,未擊中目標(biāo)
C.購買一張彩票,中獎(jiǎng)D.隨機(jī)翻到書本某頁,頁碼恰好是奇數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)國網(wǎng)江蘇電力公司分析,我省預(yù)計(jì)今夏統(tǒng)調(diào)最高用電負(fù)荷將達(dá)到86000000千瓦,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為千瓦.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A,B兩點(diǎn),且與坐標(biāo)軸的交點(diǎn)為(﹣6,0),(0,6),點(diǎn)B的橫坐標(biāo)為﹣4.
(1)試確定反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出不等式的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:① AD∥BC;② ∠ACB=2∠ADB;③ ∠ADC=90°-∠ABD;④ BD平分∠ADC;⑤ 2∠BDC=∠BAC.其中正確的結(jié)論有 ( 。
A. ①②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為-4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t大于0)秒.
(1)點(diǎn)C表示的數(shù)為__________;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到達(dá)點(diǎn)A處時(shí)運(yùn)動(dòng)時(shí)間t為秒__________;
(3)運(yùn)動(dòng)過程中點(diǎn)P表示的數(shù)的表達(dá)式為_____________;(用含字母t的式子表示)
(4)當(dāng)t等于多少秒時(shí),P、C之間的距離為2個(gè)單位長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com