【題目】西安某學校為了改善辦學條件,計劃購置一批電子白板和臺式電腦.經招投標,購買一臺電子白板比購買2臺臺式電腦多3000元,購買2臺電子白板和3臺臺式電腦共需2.7萬元.
(1)設購買一臺臺式電腦需元,購買一臺電子白板需 元(用含的代數式表示)
(2)求購買一臺電子白板和一臺臺式電腦各需多少元?
【答案】(1)(2x+3000);(2)購買一臺電子白板需9000元,購買一臺臺式電腦需3000元
【解析】
(1)根據“購買一臺電子白板比購買2臺臺式電腦多3000元”即可得到一臺電子白板的價錢;(2)根據題中等量關系“購買2臺電子白板和3臺臺式電腦共需2.7萬元”列方程求解.
解:(1)設購買一臺臺式電腦需元,根據題意得,
購買一臺電子白板需(2x+3000)元.
(2)設購買一臺臺式電腦需元,則購買一臺電子白板需(2x+3000)元,根據題意得,
2(2x+3000)+3x=27000
解得,x=3000
∴2x+3000=2×3000+3000=9000元
答:購買一臺電子白板需9000元,購買一臺臺式電腦需3000元.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=AD,連接CE并延長交AD于點F,連接AE,過B點作BG⊥AE于點G,延長BG交AD于點H.在下列結論中:①AH=DF;②∠AEF=45°;③S四邊形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正確的結論有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P的圓心坐標是(5,a)(a>5),半徑為5,函數y=x的圖象被⊙P截得的弦AB的長為8,則a的值是( )
A. 8 B. 5+3 C. 5 D. 5+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(≈1.7,結果精確到個位).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段,,請你用量角器和刻度尺按下列要求畫圖:
(1)以為頂點,為一邊,在同側畫,與相交于點;
(2)取線段的中點,連接;
(3)用量角器得 ;
(4)用刻度尺測得線段 ,的長為 .(結果保留整數),圖中與線段相等的線段有 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】市某中學開展以“三創(chuàng)一辦”為中心,以“校園文明”為主題的手抄報比賽.同學們積極參與,參賽同學每人交了一份得意作品,所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結果繪制成如下兩幅統(tǒng)計圖.請你根據圖中所給信息解答下列問題:
(1)一等獎所占的百分比是__________.
(2)在此次比賽中,一共收到多少份參賽作品?請將條形統(tǒng)計圖補充完整.
(3)各獎項獲獎學生分別有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,以CD為直徑的⊙O交BC于點E,連接AE交CD于點P,交⊙O于點F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關系,并說明理由;
(2)若PF:PC=1:2,AF=5,求CP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD,CEFG按如圖放置,點B,C,E在同一條直線上,點P在BC邊上,PA=PF,且∠APF=90°,連接AF交CD于點M,有下列結論:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正確的是( )
A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+與x軸相交于點B,與y軸相交于點A.
(1)求∠ABO的度數;
(2)過點A的直線l交x軸的正半軸于點C,且AB=AC,求直線的函數解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com