【題目】已知:x為實數(shù),[x]表示不超過x的最大整數(shù),如[3.14]=3,[1]=1,[﹣1.2]=﹣2.請你在學(xué)習(xí),理解上述定義的基礎(chǔ)上,解決下列問題:設(shè)函數(shù)y=x﹣[x].
(1)當(dāng)x=2.15時,求y=x﹣[x]的值;
(2)當(dāng)0<x<2時,求函數(shù)y=x﹣[x]的表達(dá)式,并畫出函數(shù)圖象;
(3)當(dāng)﹣2<x<2時,平面直角坐標(biāo)系xOy中,以O為圓心,r為半徑作圓,且r≤2,該圓與函數(shù)y=x﹣[x]恰有一個公共點,請直接寫出r的取值范圍.
【答案】(1)0.15;(2)①y=x,②當(dāng)1y=x﹣1, (3)r的取值范圍是:0<r<或x=.
【解析】試題分析:(1)根據(jù)[x]的定義進(jìn)行計算即可;
(2)由已知條件:0<x<1,1≤x<2進(jìn)行分類討論,由此可求出結(jié)論;
(3)把自變題x在-2<x<2內(nèi)分四種情況得出相應(yīng)的函數(shù)關(guān)系式,并畫出圖形,確定r的取值即可.
試題解析:解:(1)當(dāng)x=2.15時,y=x﹣[x]=2.15﹣[2.15]=2.15﹣2=0.15;
(2)①當(dāng)0<x<1時,[x]=0.∵y=x﹣[x],∴y=x;
②當(dāng)1≤x<2時,[x]=1
∵y=x﹣[x],∴y=x﹣1;
(3)函數(shù)y=x﹣[x](﹣2<x<2),如圖,OA=.
①當(dāng)﹣2<x<﹣1,[x]=﹣2,y=x﹣[x]=x+2,②當(dāng)﹣1≤x<0時,[x]=﹣1,y=x﹣[x]=x+1,③當(dāng)0≤x<1時,[x]=0,y=x﹣[x ]=x,④當(dāng)1≤x<2時,[x]=1,y=x﹣[x]=x﹣1,當(dāng)r=OA= 時,⊙O與直線y=x﹣1相交于一點,OC= OA=,當(dāng)0<r<時,⊙O總與直線y=x相交于一點;
綜上所述:r的取值范圍是:0<r<或x= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)圖(1)是一個長為2m,寬為2n的矩形,把此矩形沿圖中虛線用剪刀均分為四個小長方形,然后按圖(2)的形狀拼成一個大正方形.請問:這兩個圖形的什么量不變?
(2)把所得的大正方形面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式表示為(m-n)2或m2-2mn+n2 .
(3)由前面的探索可得出的結(jié)論是:在周長一定的矩形中,當(dāng) 時,面積最大.
(4)若矩形的周長為24cm,則當(dāng)邊長為多少時,該圖形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中的每個小正方形的邊長均為1個單位長度,Rt△ABC的頂點均在格點上,建立平面直角坐標(biāo)系后,點A(4,3),點B(1,1),點C(4,1).
(1)畫出Rt△ABC關(guān)于y軸對稱的Rt△A1B1C1,(點A、B、C的對稱點分別是A1、B1、C1),直接寫出A1的坐標(biāo);
(2)將Rt△ABC向下平移4個單位,得到Rt△A2B2C2(點A、B、C的對應(yīng)點分別是A2、B2、C2),畫出Rt△A2B2C2 ,連接A1C2,直接寫出線段A1C2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為50cm,與水平桌面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平桌面所形成的夾角∠OCA,∠OBA分別為90°和30°.(不考慮其他因素,結(jié)果精確到0.1cm. sin75°≈0.97,cos75°≈0.26,≈1.73
(1)求該臺燈照亮水平桌面的寬度BC.
(2)人在此臺燈下看書,將其側(cè)面抽象成如圖2所示的幾何圖形,若書與水平桌面的夾角∠EFC為60°,書的長度EF為24cm,點P為眼睛所在位置,當(dāng)點P在EF 的垂直平分線上,且到EF距離約為34cm(人的正確看書姿勢是眼睛離書距離約1尺≈34cm)時,稱點P為“最佳視點”.請通過計算說明最佳視點P在不在燈光照射范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》(1261年)一書中,用下圖的三角形解釋二項和的乘方規(guī)律.楊輝在注釋中提到,在他之前北宋數(shù)學(xué)家賈憲(1050年左右)也用過上述方法,因此我們稱這個三角形為“楊輝三角”或“賈憲三角”.楊輝三角兩腰上的數(shù)都是,其余每一個數(shù)為它上方(左右)兩數(shù)的和.事實上,這個三角形給出了的展開式(按的次數(shù)由大到小的順序)的系數(shù)規(guī)律.例如,此三角形中第三行的個數(shù),恰好對應(yīng)著展開式中的各項系數(shù),第四行的個數(shù),恰好對應(yīng)著展開式中的各項系數(shù),等等.請依據(jù)上面介紹的數(shù)學(xué)知識,解決下列問題:
(1)寫出的展開式;
(2)利用整式的乘法驗證你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司5月份銷售某種型號汽車,當(dāng)月該型號汽車的進(jìn)價為30萬元/輛,若當(dāng)月銷售量超過5輛時,每多售出1輛,所有售出的汽車進(jìn)價均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會突破30臺.
(1)設(shè)當(dāng)月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實際進(jìn)價為y萬元/輛,當(dāng)0<x≤5時,y= ; 當(dāng)5<x≤30時,y= ;(直接填最后結(jié)果)
(2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當(dāng)月銷售利潤25萬元,那么月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸相交于點B,與y軸相交于點A,點E為線段AB中點,∠ABO的平分線BD與y軸相較于點D,點A、C關(guān)于點O對稱.
(1)求線段DE的長;
(2)一個動點P從點D出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動到直線BC上的點F,再沿射線CB方向移動2個單位到點G,最后從點G沿適當(dāng)?shù)穆窂竭\(yùn)動到點E處,當(dāng)P的運(yùn)動路徑最短時,求此時點G的坐標(biāo);
(3)將△ADE繞點A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度α(0<α≤180°),在旋轉(zhuǎn)過程中DE所在的直線分別與直線BC、直線AC相交于點M、點N,是否存在某一時刻使△CMN為等腰三角形,若存在,請求出CM的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,.點G,E分別在邊AB,CD上,點F,H在對角線AC上.若四邊形EFGH是菱形,則AG的長是( )
A.B.5C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)計劃購買這兩種商品共50件,且投入的經(jīng)費(fèi)不超過3200元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com