【題目】如圖1,△ABC內(nèi)接于⊙O,直徑AD交BC于點E,延長AD至點F,使DF=2OD,連接FC并延長交過點A的切線于點G,且滿足AG∥BC,連接OC,若cos∠BAC=,BC=8.
(1)求證:CF是⊙O的切線;
(2)求⊙O的半徑OC;
(3)如圖2,⊙O的弦AH經(jīng)過半徑OC的中點F,連結(jié)BH交弦CD于點M,連結(jié)FM,試求出FM的長和△AOF的面積.
【答案】(1)見解析;(2);(3),
【解析】
(1)由DF=2OD,得到OF=3OD=3OC,求得,推出△COE∽△FOE,根據(jù)相似三角形的性質(zhì)得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切線;
(2)利用三角函數(shù)值,設(shè)OE=x,OC=3x,得到CE=3,根據(jù)勾股定理即可得到答案;
(3)連接BD,根據(jù)圓周角定理得到角相等,然后證明△AOF∽△BDM,由相似三角形的性質(zhì),得到FM為中位線,即可求出FM的長度,由相似三角形的性質(zhì),以及中線分三角形的面積為兩半,即可求出面積.
解:(1) ∵DF=2OD,
∴OF=3OD=3OC,
∴,
∵∠COE=∠FOC,
∴△COE∽△FOE,
∴∠OCF=∠DEC=90°,
∴CF是⊙O的切線;
(2)∵∠COD=∠BAC,
∴cos∠BAC=cos∠COE=,
∴設(shè)OE=x,OC=3x,
∵BC=8,
∴CE=4,
∵CE⊥AD,
∴OE2+CE2=OC2,
∴x2+42=9x2,
∴x=(負值已舍去),
∴OC=3x=,
∴⊙O的半徑OC為;
(3)如圖,連結(jié)BD,
由圓周角定理,則∠OAF=∠DBM,,
∵BC⊥AD,
∴,
∴∠ADC=∠ADB,
∴,
∴△AOF∽△BDM;
∵點F是OC的中點,
∴AO:OF=BD:DM=2,
又∵BD=DC,
∴DM=CM,
∴FM為中位線,
∴FM=
∴S△AOF: S△BDM=(:)2 ;
∵;
∴S△AOF==;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點.
(1)若點也在該拋物線上,請用含的關(guān)系式表示;
(2)若該拋物線上任意不同兩點、都滿足:當時,;當時,;若以原點為圓心,為半徑的圓與拋物線的另兩個交點為、(點在點左側(cè)),且有一個內(nèi)角為,求拋物線的解析式;
(3)在(2)的條件下,若點與點關(guān)于點對稱,且、、三點共線,求證:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移5個單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點為點A.函數(shù)y=ax2+bx+c的圖象的頂點為點C,兩函數(shù)圖象分別交于B、D兩點.
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點M是y軸上的動點,在平面內(nèi)是否存在一點N,使以B、D、M、N為頂點的四邊形為矩形?若存在,請求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在以“青春心向覺,建功新時代”為主題的校園文化藝術(shù)節(jié)期間,舉辦了合唱,群舞,書法,演講共四個項目的比賽,要求每位學(xué)生必須參加且僅參加一項,小紅隨機調(diào)查了部分學(xué)生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計圖補充完整;
(3)若全校共有1800名學(xué)生,請估計該校報名參加書法和演講比賽的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點試開放期間,團隊收費方案如下:不超過30人時,人均收費120元;超過30人且不超過m(30<m≤100)人時,每增加1人,人均收費降低1元;超過m人時,人均收費都按照m人時的標準.設(shè)景點接待有x名游客的某團隊,收取總費用為y元.
(1)求y關(guān)于x的函數(shù)表達式;
(2)景點工作人員發(fā)現(xiàn):當接待某團隊人數(shù)超過一定數(shù)量時,會出現(xiàn)隨著人數(shù)的增加收取的總費用反而減少這一現(xiàn)象.為了讓收取的總費用隨著團隊中人數(shù)的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,直線交軸負半軸)軸正半軸于兩點, 的面積為4.5;
如圖1.求的值;
如圖2.在軸負半軸上取點.點在第一象限,連接,過點作交的延長線于點,若,求的值;
如圖3,在的條件下.交軸于點軸交的延長線于點,設(shè)與軸交于點,連接,當時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點A、B重合)的任一點,點C、D為⊙O上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在6.26國際禁毒日到來之際,重慶市教委為了普及禁毒知識,提高禁毒意識,舉辦了“關(guān)愛生命,拒絕毒品”的知識競賽.某校初一、初二年級分別有300人,現(xiàn)從中各隨機抽取20名同學(xué)的測試成績進行調(diào)查分析,成績?nèi)缦拢?/span>
(1)根據(jù)上述數(shù)據(jù),將下列表格補充完成.
(整理、描述數(shù)據(jù)):
分數(shù)段 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
初一人數(shù) | 2 | _______ | _______ | 12 |
初二人數(shù) | 2 | 2 | 1 | 15 |
(分析數(shù)據(jù)):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如表:
年級 | 平均數(shù) | 中位數(shù) | 滿分率 |
初一 | 93 | ________ | |
初二 | ________ |
(得出結(jié)論):
(2)估計該校初一、初二年級學(xué)生在本次測試成績中可以得到滿分的人數(shù)共______人;
(3)你認為哪個年級掌握禁毒知識的總體水平較好,請從兩個方面說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com