【題目】如圖,O的直徑AB26PAB(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、DO上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

【答案】(1)CPD是直徑AB的“回旋角”,理由見解析;(2)“回旋角”∠CPD的度數(shù)為45°;(3)滿足條件的AP的長為323

【解析】

1)由∠CPD、∠BPC得到∠APD,得到∠BPC=∠APD,所以∠CPD是直徑AB回旋角;(2)利用CD弧長公式求出∠COD45°,作CEAB交⊙OE,連接PE,利用∠CPD為直徑AB回旋角,得到∠APD=∠BPC,∠OPE=∠APD,得到∠OPE+CPD+BPC180°,即點(diǎn)D,P,E三點(diǎn)共線,∠CEDCOD22.5°,

得到∠OPE90°22.5°67.5°,則∠APD=∠BPC67.5°,所以∠CPD45°;(3)分出情況POA上或者OB上的情況,在OA上時(shí),同理(2)的方法得到點(diǎn)D,P,F在同一條直線上,得到PCF是等邊三角形,連接OC,OD,過點(diǎn)OOGCDG

利用sinDOG,求得CD,利用周長求得DF,過OOHDFH,利用勾股定理求得OP,進(jìn)而得到AP;在OB上時(shí),同理OA計(jì)算方法即可

CPD是直徑AB回旋角,

理由:∵∠CPD=∠BPC60°

∴∠APD180°﹣∠CPD﹣∠BPC180°60°60°60°,

∴∠BPC=∠APD,

∴∠CPD是直徑AB回旋角;

(2)如圖1,∵AB26,

OCODOA13

設(shè)∠COD,

的長為π,

n45,

∴∠COD45°,

CEAB交⊙OE,連接PE,

∴∠BPC=∠OPE,

∵∠CPD為直徑AB回旋角,

∴∠APD=∠BPC

∴∠OPE=∠APD,

∵∠APD+CPD+BPC180°,

∴∠OPE+CPD+BPC180°,

∴點(diǎn)D,PE三點(diǎn)共線,

∴∠CEDCOD22.5°

∴∠OPE90°22.5°67.5°,

∴∠APD=∠BPC67.5°,

∴∠CPD45°

即:回旋角CPD的度數(shù)為45°,

(3)①當(dāng)點(diǎn)P在半徑OA上時(shí),如圖2,過點(diǎn)CCFAB交⊙OF,連接PF,

PFPC,

(2)的方法得,點(diǎn)D,P,F在同一條直線上,

∵直徑AB回旋角120°,

∴∠APD=∠BPC30°

∴∠CPF60°,

∴△PCF是等邊三角形,

∴∠CFD60°,

連接OCOD,

∴∠COD120°,

過點(diǎn)OOGCDG

CD2DG,∠DOGCOD60°,

DGODsinDOG13×sin60°

CD,

∵△PCD的周長為24+13

PD+PC24,

PCPF

PD+PFDF24,

OOHDFH,

DHDF12

RtOHD中,OH

RtOHP中,∠OPH30°

OP10,

APOAOP3

②當(dāng)點(diǎn)P在半徑OB上時(shí),

同①的方法得,BP3

APABBP23,

即:滿足條件的AP的長為323

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級10個(gè)班的300名學(xué)生即將參加學(xué)校舉行的研究旅行活動,學(xué)校提出以下4個(gè)活動主題:A.赤水丹霞地貌考察;B.平塘天文知識考察;C.山關(guān)紅色文化考察;D.海龍電土司文化考察,為了解學(xué)生喜歡的活動主題,學(xué)生會開展了一次調(diào)查研究,請將下面的過程補(bǔ)全

1)收集數(shù)據(jù):學(xué)生會計(jì)劃調(diào)查學(xué)生喜歡的活動主題情況,下面抽樣調(diào)查的對象選擇合理的是______.(填序號)

①選擇七年級3班、4班、5班學(xué)生作為調(diào)查對象

②選擇學(xué)校旅游攝影社團(tuán)的學(xué)生作為調(diào)查對象

③選擇各班學(xué)號為6的倍數(shù)的學(xué)生作為調(diào)查對象

2)整理、描述數(shù)據(jù):通過調(diào)査后,學(xué)生會同學(xué)繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請把統(tǒng)計(jì)圖補(bǔ)充完整

某校七年級學(xué)生喜歡的活動主題條形統(tǒng)計(jì)圖某校七年級學(xué)生喜歡的活動主題扇形統(tǒng)計(jì)圖

3)分析數(shù)據(jù)、推斷結(jié)論:請你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次活動的主題,你的推薦是______(填A-D的字母代號),估算全年級大約有多少名學(xué)生喜歡這個(gè)主題活動

4)若在5名學(xué)生會干部(32女)中,隨機(jī)選取2名同學(xué)擔(dān)任活動的組長和副組長,求抽出的兩名同學(xué)恰好是11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知內(nèi)接于圓,點(diǎn)為弧上一點(diǎn),連接于點(diǎn),

          

1)如圖1,求證:弧;

2)如圖2,過于點(diǎn),交圓點(diǎn),連接于點(diǎn),且,求的度數(shù);

3)如圖3,在(2)的條件下,圓上一點(diǎn)與點(diǎn)關(guān)于對稱,連接,交于點(diǎn),點(diǎn)為弧上一點(diǎn),于點(diǎn),交的延長線于點(diǎn),,的周長為20,,求圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC內(nèi)接于⊙O,直徑ADBC于點(diǎn)E,延長AD至點(diǎn)F,使DF2OD,連接FC并延長交過點(diǎn)A的切線于點(diǎn)G,且滿足AGBC,連接OC,若cosBAC,BC8

1)求證:CF是⊙O的切線;

2)求⊙O的半徑OC;

3)如圖2,⊙O的弦AH經(jīng)過半徑OC的中點(diǎn)F,連結(jié)BH交弦CD于點(diǎn)M,連結(jié)FM,試求出FM的長和AOF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊直角三角板OAB放在平面直角坐標(biāo)系中,B(20),AOB=60°,點(diǎn)A在第一象限,過點(diǎn)A的雙曲線為.x軸上取一點(diǎn)P,過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,線段OB經(jīng)軸對稱變換后的像是OB

1)當(dāng)點(diǎn)O與點(diǎn)A重合時(shí),點(diǎn)P的坐標(biāo)是

2)設(shè)P(t,0),當(dāng)OB與雙曲線有交點(diǎn)時(shí),t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)

34.8

32

29.6

28

售價(jià)x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式組無解,且關(guān)于y的分式方程有非正整數(shù)解,則符合條件的所有整數(shù)k的值之和為( 。

A.7B.12C.20D.34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形的邊軸上,點(diǎn)的坐標(biāo)為,點(diǎn)是對角線上的一個(gè)動點(diǎn),點(diǎn)軸上,當(dāng)最短時(shí),點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB8,AD10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m0

1)求點(diǎn)EF的坐標(biāo)(用含m的式子表示);

2)連接OA,若△OAF是等腰三角形,求m的值;

3)如圖2,設(shè)拋物線yaxm+62+h經(jīng)過A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM90°,求a、h、m的值.

查看答案和解析>>

同步練習(xí)冊答案