【題目】如圖,在△ABC中,AB=AC,D、EBC邊上的點,連接AD,AE,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△AD′E,連接D′C,若BD=CD′;

(1)求證:△ABD≌△ACD′;

(2)若∠BAC=120°,求∠DAE的度數(shù)

【答案】(1)見解析;(2)

【解析】

(1)根據(jù)對稱得出AD=AD,根據(jù)SSSABD≌△ACD即可;

(2)根據(jù)全等得出∠BAD=CAD,求出∠BAC=DAD,根據(jù)對稱得出∠DAE=DAD,代入求出即可.

證明:∵以ADE的邊AE所在直線為對稱軸作ADE的軸對稱圖形ADE,

,

ABDACD中,

,

ABDACD′(SSS).

解:∵

,

,

∵以ADE的邊AE所在直線為對稱軸作ADE的軸對稱圖形ADE

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣ x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設(shè)點P的橫坐標為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關(guān)于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應(yīng)的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,DBC邊的中點,以AD為邊作等邊ADE.

(1)求∠CAE的度數(shù);

(2)AB邊的中點F,連接CF、CE,試說明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為(

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)寫出方程 x y =3的兩個解__________,把方程 x y =3化成一次函數(shù)的形式為__________;

(2)以方程 x y =3的解為坐標的所有點組成的圖象與一次函數(shù) y =3- x 的圖象相同嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機可以計算行走的步數(shù)與相應(yīng)的能量消耗.對比手機數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面給出的五個結(jié)論中:

①最大的負整數(shù)是-1;②數(shù)軸上表示數(shù)3-3的點到原點的距離相等;

③當a≤0時,|a|=-a成立;④若a2=9,則a一定等于3;

一定是正數(shù).說法正確的有_________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和DCB中,A=D=90°,AC=BD,AC與BD相交于點O.

(1)求證:ABO≌△DCO;

(2)OBC是何種三角形?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案